Skip to main content
Log in

The active environment influence on the luminescence of SnO2 nanoparticles’ ensembles in a porous matrix

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The environmental influence (with alkaline and acid components) on the luminescence character of SnO2 nanoparticles’ ensembles in a porous silicate glass matrix was studied. The established changes in the luminescence are associated with the interaction nature of alkaline or acid ions with nanoparticles in the pores of silicate glass. A sharp drop in the radiation intensity is due to the formation of unstable ammonia complexes SnO2[NH3] in the alkaline environmental with a large capture cross section. Such complexes are not formed in an acidic environmental, and a slow and smooth change in the photoluminescence intensity is associated with the penetration of HCl molecules into the pores with subsequent dissociation. A correlation was also established between the changes in luminescence behavior and the composition of the initial solution for the porous matrix impregnation. The possibility of spontaneous restoration of the initial characteristics of the investigated material is established. This and its almost absolute chemical resistance make it possible to use an ensemble of SnO2 nanoparticles in silicate porous glass as an active working material for a luminescent ammonia sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code availability

Not applicable.

References

  1. C.K. Ho, A. Robinson, D.R. Miller, M.J. Davis, Sensors (Basel) 5(2), 4 (2005)

    Article  Google Scholar 

  2. Draft Roadmap for Next Generation Air Monitoring (2013) EPA’s Next Generation Air Monitoring Workshop Series Air Sensors 2013: Data Quality and Applications. EPA’s Research Triangle Park Campus, North Carolina. https://sites.google.com/site/airsensors2013/final-materials. https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhaXJzZW5zb3JzMjAxM3xneDo1MzdiYTNmYjVkOGQxMDJk. Accessed 23 Sept 2020

  3. M.J. McGrath, C.N. Scanaill, Environmental Monitoring for Health and Wellness. In: Sensor Technologies (Apress, Berkeley, CA, 2013)

    Book  Google Scholar 

  4. H. Hayat, T. Griffiths, D. Brennan, R.P. Lewis, M. Barclay, C. Weirman, B. Philip, J.R. Searle, Sensors 19, 3648 (2019)

    Article  Google Scholar 

  5. T.H. Gfroerer, In encyclopedia of analytical chemistry, in McGuire. ed. by R.A. Meyers (John Wiley and Sons, Newyork, 2006)

    Google Scholar 

  6. J. Lefebvre, S.P. Maruyama, Finnie Photoluminescence: Science and Applications, in Carbon Nanotubes Topics in Applied Physics. ed. by G. Dresselhaus, M.S. Dresselhaus (Springer, Berlin, Heidelberg, 2007)

    Google Scholar 

  7. L. Li, W. Wang, J. Tang, Y. Wang, J. Liu, L. Huang, Y. Wang, F. Guo, J. Wang, W. Shen, L.A. Belfiore, Nanoscale Res Lett 14, 190 (2019). https://doi.org/10.1186/s11671-019-3006-y

    Article  ADS  Google Scholar 

  8. M. Batzill, U. Diebold, Prog Surface Sci 79, 47 (2005)

    Article  ADS  Google Scholar 

  9. S. Das, V. Jayaraman, Prog Mat Sci 66, 112 (2014)

    Article  Google Scholar 

  10. M. Periyasamy, A. Kar, J Mater Chem C 8, 4604 (2020)

    Article  Google Scholar 

  11. F. Gu, Sh.F. Wang, Ch.F. Song, M.K. Lü, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem Phys Lett 372(3–4), 451 (2003)

    Article  ADS  Google Scholar 

  12. S. Kar, A.P. Kundu, J Phys Chem C 115(1), 118 (2011)

    Article  Google Scholar 

  13. D. Mohanta, M. Ahmaruzzaman, RSC Adv 6, 110996 (2016). https://doi.org/10.1039/C6RA21444D

    Article  Google Scholar 

  14. M. Karmaoui, A.B. Jorge, P.F. McMillan, A.E. Aliev, R.C. Pullar, J.A. Labrincha, D.M. Tobaldi, ACS Omega 3(10), 13227 (2018). https://doi.org/10.1021/acsomega.8b02122

    Article  Google Scholar 

  15. G.E. Patil, D.D. Kajale, V.B. Gaikwad et al., Int Nano Lett 2, 17 (2012). https://doi.org/10.1186/2228-5326-2-17

    Article  Google Scholar 

  16. W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Chem Soc Rev 46, 3242–3285 (2017). https://doi.org/10.1039/C6CS00930A

    Article  Google Scholar 

  17. S. Wei, S. Chu, Q. Lu, W. Zhou, R. Cai, Z. Shao, Chem Select 3, 4015 (2018). https://doi.org/10.1002/slct.201800411

    Article  Google Scholar 

  18. R.S. Ningthoujama, V. Sudarsan, Appl Phys Lett 90, 173113 (2007)

    Article  ADS  Google Scholar 

  19. T. Bürgehan, Fe2O3 and SnO2 Nanoparticles in Polymer Matrices: Towards Vinyl Hybrid Inorganic/Polymer Nano Composites Nanoparticles in Polymer Matrices: Towards Vinyl Hybrid Inorganic/Polymer Nano Composites (Koç University, Istanbul, 2007)

    Google Scholar 

  20. M. Babazadeh, M. Sheidaei, S. Sattary, Synth React Inorg Met Org Nano Met Chem 44, 819 (2014). https://doi.org/10.1080/15533174.2013.791842

    Article  Google Scholar 

  21. IK Doycho, in Nonequilibrium Processes in Sensory Structures, ed. by V.A. Smyntyna, 120 (ONU, Odessa, 2015) (in Russian)

  22. I.K. Doycho, V.S. Grinevych, L.M. Filevska, in Advanced Nanomaterials for Detection of CBRN, NATO Science for Peace and Security Series a: Chemistry and Biology ed. by J. Bonča, S. Kruchinin, (Springer, Dordrecht, 2020). https://doi.org/10.1007/978-94-024-2030-2_21

    Chapter  Google Scholar 

  23. O.V. Mazurin, G.P. Roskova, V.I. Averianov, T.V. Antropova, Biphasic Glasses: Structure, Properties, Applications, 276 (NAUKA, Leningrad, 1991) (in Russian)

    Google Scholar 

  24. S.A. Gevelyuk, V.S. Grinevich, I.K. Doycho, Y.I. Lepikh, L.M. Filevska, J Nano Electron Phys 12(3), 03020 (2020)

    Article  Google Scholar 

  25. H. Uchiyama, Y. Shirai, H. Kozuka, J Cryst Growth 319, 70 (2011)

    Article  ADS  Google Scholar 

  26. H.N. Lim, R. Nurzulaikha, I. Harrison, S.S. Lim, W.T. Tan, M.C. Yeo, Int J Electrochem Sci. 6, 4329 (2011). https://www.electrochemsci.org/papers/vol6/6094329.pdf. Accessed 23 Sept 2020

  27. O.V. Tyurin, Y.M. Bercov, S.O. Zhukov, T.F. Levitskaya, S.A. Gevelyuk, I.K. Doycho, E. Rysiakiewicz-Pasek, Opt Appl 40(2), 311 (2010). https://opticaapplicata.pwr.edu.pl/files/pdf/2010/no2/optappl_4002p311.pdf. Accessed 23 Sept 2020

  28. S.A. Gevelyuk, V.S. Grinevych, I.K. Doycho, M. Filevska, IEEE 8th International conference on advanced optoelectronics and lasers (CAOL). Sozopol Bulgaria (2019). https://doi.org/10.1109/CAOL46282.2019.9019433

    Article  Google Scholar 

  29. I.K. Doycho, S.A. Gevelyuk, Y.I. Lepikh, E. Rysiakiewicz-Pasek, Sensor Electronic Microsyst Technol 14(1), 31 (2017). https://doi.org/10.18524/1815-7459.2017.1.96436

    Article  Google Scholar 

  30. I.K. Doycho, S.A. Gevelyuk, Ya. Lepikh, E. Rysiakiewicz-Pasek, Opt Appl 49(3), 427 (2019). https://opticaapplicata.pwr.edu.pl/files/pdf/2019/no3/optappl_4903p427.pdf. Accessed 23 Sept 2020

Download references

Funding

The work was carried out as a part of a project financed by the Ministry of Education and Science of Ukraine under the program “Science at Universities”.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, data collection and analysis, the final manuscript.

Corresponding author

Correspondence to V. S. Grinevych.

Ethics declarations

Conflicts of interest

Not applicable.

Ethics approval

The manuscript not submitted to other journal for simultaneous consideration. The submitted work is original and not has been published elsewhere in any form or language. Results presented clearly, honestly, and without fabrication, falsification or inappropriate data manipulation. No data, text, or theories by others are presented as if they were the author’s own.

Consent to participate

All listed authors agreed to participate in preparation and publication, approved the manuscript before submission, including the names and order of authors.

Consent for publication

All authors agreed with the content and gave explicit consent to submit. Authors obtained consent from the responsible authorities at the Odesa I.I. Mechnikov National University where the work has been carried out, before the work is submitted.

Availability of data and material

Data and materials are available at the authors’ workplace—The Odesa I.I. Mechnikov National University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevelyuk, S.A., Grinevych, V.S., Doycho, I.K. et al. The active environment influence on the luminescence of SnO2 nanoparticles’ ensembles in a porous matrix. Appl. Phys. A 126, 919 (2020). https://doi.org/10.1007/s00339-020-04101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04101-4

Keywords

Navigation