Skip to main content
Log in

Surface waves in piezothermoelastic transversely isotropic layer lying over piezothermoelastic transversely isotropic half-space

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, the propagation of Rayleigh surface waves in a piezothermoelastic transversely isotropic layer lying over a piezothermoelastic transversely isotropic half-space is investigated in the context of the Green–Naghdi model type III of hyperbolic thermoelasticity. The secular equation of Rayleigh surface waves is derived, and different cases are discussed. Phase velocity, attenuation coefficient and specific loss of surface waves are computed and presented graphically with respect to frequency, and a comparison of different wave characteristics for classical and generalized thermoelastic models is presented in the figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Biot, M.: Thermoelsticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  2. Lord, H., Shulman, Y.: A generalized dynamic theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  3. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  4. Green, A.E., Naghdi, P.M.: A re-examination of the basic properties of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1991)

    Article  Google Scholar 

  5. Green, A.E., Naghdi, P.M.: On damped heat waves in an elastic solid. J. Therm. Stresses 15, 252–264 (1992)

    Article  Google Scholar 

  6. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  7. Chandrasekharaih, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(11), 705–729 (1998)

    Article  Google Scholar 

  8. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  9. Curie, J., Curie, P.: Développement  par compression de l’électricité polaire dans les cristaux hemledres a faces inclines. bulletin no. 4 de la societee minearalogique de france 3, 1880

  10. Mindlin, R.D.: On the equations of motion of piezoelectric crystals problems of continuum mechanics. SIAM Philadelphia N.I Muskelishvili’s Birthday 70, 282–290 (1961)

    Google Scholar 

  11. Mindlin, R.D.: Equation of High Frequency Vibrations of Thermo-Piezo-Electric Plates, Interactions in Elastic Solids. Springer, Wein (1979)

    Google Scholar 

  12. Gates, W.D.: Vibrating angular rate sensor may threaten the gyroscope. Electronic 41, 103–134 (1968)

    Google Scholar 

  13. Soderkvist, J.: Micro machined gyroscopes. Sens. Actuators A 43, 65–71 (1994)

    Article  Google Scholar 

  14. Wren, T., Burdess, J.S.: Surface waves perturbed by rotation. ASME J. Appl. Mech. 54, 464–468 (1987)

    Article  Google Scholar 

  15. Clarke, N.S., Burdess, J.S.: A rotation rate sensor based upon a Rayleigh resonator. ASME J. Appl. Mech. 61, 139–143 (1994)

    Article  Google Scholar 

  16. Fang, H., Yang, J.S., Jiang, Q.: Rotation sensitivity of waves propagating in a piezoelectric plate. Int. J. Solids Struct. 39, 5241–51 (2000)

    Article  Google Scholar 

  17. Chen, T.Y.: Further correspondences between plane piezoelectricity and generalized plane strain in elasticity. Proc. R. Soc. Lond. A 454, 873–884 (1971)

    Article  MathSciNet  Google Scholar 

  18. Chizhikov, S.I., Sorokin, N.G., Petrakov, V.S.: The elastoelectric effect in the non-centrosymmetric crystal. In: Taylor, G.W., et al. (eds.) Piezoelectricity, pp. 75–91. Gordon & Breach Science publishers, New York (1985)

    Google Scholar 

  19. He, J.H.: Coupled variational principles of piezoelectricity. Int. J. Eng. Sci. 39, 323–341 (2001)

    Article  MathSciNet  Google Scholar 

  20. Maugin, G.A.: The Mechanical Behaviour of Electromagnetic Solid Continua. North-Holland, Amsterdam (1984)

    Google Scholar 

  21. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solid. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  22. Nowacki, W.: Some general theorems of thermo-piezoelectricity. J. Therm. Stresses 1, 171–182 (1978)

    Article  Google Scholar 

  23. Nowacki, W.: Foundations of linear piezoelectricity. In: Parkus, H. (ed.) Electromagnetic Interactions in Elastic Solids. Springer, Wien (1979). (Chapter 1)

    Google Scholar 

  24. Nowacki, W.: Mathematical models of phenomenological piezoelectricity. In: New Problems in Mechanics of Continua. University of Waterloo Press, Ontario, pp. 29–49 (1983)

  25. Chandrasekharaiah, D.S.: A temperature rate dependent theory of piezoelectricity. J. Therm. Stresses 7, 293–306 (1984)

    Article  MathSciNet  Google Scholar 

  26. Chandrasekharaiah, D.S.: A generalized linear thermoelastic theory of piezoelectric media. Acta Mech. 71, 39–49 (1988)

    Article  Google Scholar 

  27. Sharma, J.N., Pal, M., Chand, D.: Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. J. Sound Vib. 284, 227–248 (2005)

    Article  Google Scholar 

  28. Sharma, J.N., Walia, V.: Further investigations on Rayleigh waves in piezothermoelastic materials. J. Sound Vib. 301, 189–206 (2007)

    Article  Google Scholar 

  29. Sharma, J.N., Walia, V.: Effect of rotation on Rayleigh waves in piezothermoelastic half space. Int. J. Solids Struct. 44, 1060–1072 (2007)

    Article  Google Scholar 

  30. Sharma, J.N., Pal, M.: Propagation of Lamb waves in transversely isotropic piezothermoelastic plate. J. Sound Vib. 270, 587–610 (2004)

    Article  Google Scholar 

  31. Sharma, J.N., Walia, V.: Straight and circular crested Lamb waves in generalized piezothermoelastic plates. J. Therm. Stresses 29, 529–551 (2006)

    Article  Google Scholar 

  32. Sharma, J.N., Pal, M., Chand, D.: Thermoelastic Lamb waves in electrically shorted transversely isotropic piezothermoelastic plate. J. Therm. Stresses 27, 33–58 (2004)

    Article  Google Scholar 

  33. Pramanik, A.S., Biswas, S.: Surface waves in nonlocal thermoelastic medium with state space approach. J. Therm. Stresses 43(6), 667–686 (2020)

    Article  Google Scholar 

  34. Biswas, S.: Surface waves in porous nonlocal thermoelastic orthotropic medium. Acta Mech. 231(7), 2741–2760 (2020)

    Article  MathSciNet  Google Scholar 

  35. Biswas, S., Mukhopadhyay, B., Shaw, S.: Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model. J. Therm. Stresses 40(4), 403–419 (2017)

    Article  Google Scholar 

  36. Biswas, S., Abo-Dahab, S.M.: Effect of phase-lags on Rayleigh waves in initially stressed magneto-thermoelastic orthotropic medium. Appl. Math. Model. 59, 713–727 (2018)

    Article  MathSciNet  Google Scholar 

  37. Biswas, S.: Stroh analysis of Rayleigh waves in anisotropic thermoelastic medium. J. Therm. Stresses 41(5), 627–644 (2018)

    Article  Google Scholar 

  38. Biswas, S., Mukhopadhyay, B.: Eigenfunction expansion method to characterize Rayleigh wave propagation in orthotropic medium with phase-lags. Waves Random Complex Media 29(4), 722–742 (2019)

    Article  MathSciNet  Google Scholar 

  39. Kolsky, H.: Stress Waves in Solids. Dover Press, New York (1963)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the reviewer for his valuable suggestion for the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Biswas.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} {A}'= & {} {A}'_{14} {A}'_{17} -{A}'_{11} {A}'_{20} , \\ {B}'= & {} {A}'_{15} {A}'_{17} +{A}'_{14} {A}'_{18} -{A}'_{11} {A}'_{21} -{A}'_{12} {A}'_{20} , \\ {C}'= & {} {A}'_{16} {A}'_{17} +{A}'_{15} {A}'_{18} +{A}'_{14} {A}'_{19} -{A}'_{11} {A}'_{22} -{A}'_{12} {A}'_{20} -{A}'_{13} {A}'_{20} , \\ {E}'= & {} {A}'_{16} {A}'_{18} +{A}'_{15} {A}'_{19} -{A}'_{12} {A}'_{22} -{A}'_{13} {A}'_{21} , \\ {F}'= & {} {A}'_{16} {A}'_{19} -{A}'_{13} {A}'_{22}, \end{aligned}$$

where

$$\begin{aligned} {A}'_{11}= & {} b_{1} b_{9} \left( {b_{6} b_{14} +b_{9} } \right) , \\ {A}'_{12}= & {} b_{1} b_{9} \left( {b_{10} b_{14} -b_{9} b_{15} } \right) +\left( {b_{4} b_{9} -b_{5} b_{8} } \right) \left( {b_{9} +b_{6} b_{14} } \right) -\left( {b_{8} b_{14} +b_{9} b_{13} } \right) \left( {b_{2} b_{9} -b_{5} b_{6} } \right) , \\ {A}'_{13}= & {} \left( {b_{4} b_{9} -b_{5} b_{8} } \right) \left( {b_{10} b_{14} -b_{9} b_{15} } \right) +b_{5} b_{10} \left( {b_{8} b_{14} +b_{9} b_{13} } \right) , \\ {A}'_{14}= & {} b_{1} b_{9} \left( {b_{14} b_{7} -b_{9} b_{12} } \right) , \\ {A}'_{15}= & {} b_{1} b_{9} \left( {b_{9} b_{16} -b_{11} b_{14} } \right) +\left( {b_{4} b_{9} -b_{5} b_{8} } \right) \left( {b_{4} b_{7} -b_{9} b_{12} } \right) -\left( {b_{8} b_{14} +b_{9} b_{13} } \right) \left( {b_{3} b_{9} -b_{5} b_{7} } \right) , \\ {A}'_{16}= & {} \left( {b_{4} b_{9} -b_{5} b_{8} } \right) \left( {b_{9} b_{16} -b_{11} b_{14} } \right) -b_{5} b_{11} \left( {b_{8} b_{14} +b_{9} b_{13} } \right) , \\ {A}'_{17}= & {} b_{13} b_{17} \left( {b_{9} +b_{6} b_{14} } \right) -b_{17} \left( {b_{8} b_{14} +b_{9} b_{13} } \right) , \\ {A}'_{18}= & {} b_{13} b_{17} \left( {b_{10} b_{14} -b_{9} b_{15} } \right) +\left( {b_{13} b_{21} -b_{14} b_{20} } \right) \left( {b_{6} b_{14} +b_{9} } \right) \\&-\left( {b_{8} b_{14} +b_{9} b_{13} } \right) \left( {b_{21} -b_{15} b_{17} -b_{14} b_{18} } \right) , \\ {A}'_{19}= & {} \left( {b_{13} b_{21} -b_{14} b_{20} } \right) \left( {b_{10} b_{14} -b_{9} b_{15} } \right) +b_{15} b_{21} \left( {b_{8} b_{14} +b_{9} b_{13} } \right) , \\ {A}'_{20}= & {} b_{13} b_{17} \left( {b_{7} b_{14} -b_{9} b_{12} } \right) +b_{12} b_{17} \left( {b_{8} b_{14} +b_{9} b_{13} } \right) , \\ {A}'_{21}= & {} b_{13} b_{17} \left( {b_{9} b_{16} -b_{4} b_{14} } \right) +\left( {b_{13} b_{21} -b_{14} b_{20} } \right) \left( {b_{7} b_{14} -b_{9} b_{12} } \right) \\&+\left( {b_{8} b_{14} +b_{9} b_{13} } \right) \left( {b_{12} b_{21} +b_{14} b_{19} -b_{16} b_{17} } \right) , \\ {A}'_{22}= & {} \left( {b_{13} b_{21} -b_{14} b_{20} } \right) \left( {b_{9} b_{16} -b_{4} b_{14} } \right) -b_{16} b_{21} \left( {b_{8} b_{14} +b_{9} b_{13} } \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S. Surface waves in piezothermoelastic transversely isotropic layer lying over piezothermoelastic transversely isotropic half-space. Acta Mech 232, 373–387 (2021). https://doi.org/10.1007/s00707-020-02848-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02848-8

Navigation