Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 3, 2020

A zinc(II) coordination polymer based on a flexible bis(benzimidazole) ligand: synthesis, crystal structure and fluorescence study

  • Geng Zhang , Xinzhao Xia , Jianhua Xu , Lixian Xia , Cong Wang and Huilu Wu EMAIL logo

Abstract

A new one-dimensional Zn(II) coordination polymer, {[ZnCl2(BBM)]·CH3OH}n (2,2-(1,4-butanediyl)bis-1,3-benzimidazole [BBM]), has been obtained from the hydrothermal reaction of zinc chloride with the flexible bis-benzimidazole ligand BBM and characterized by single-crystal X-ray diffraction, elemental analysis, IR and UV–vis spectra. Structural analysis has revealed that the BBM ligand connects the Zn(II) atoms to form a square-wave chain, which is further extended into supramolecular layers through hydrogen bonds and π···π stacking interactions. Solid-state fluorescence investigations showed that the Zn(II) coordination polymer has an emission peak at 381 nm upon excitation at 330 nm, which is attributed to ligand-centered luminescence. It is only slightly red shifted as compared to the ligand but partially quenched due to the strong π···π stacking interactions.


Corresponding author: Huilu Wu, School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China, E-mail:

Funding source: Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University

Award Identifier / Grant number: 152022

Award Identifier / Grant number: 17JR5RA090

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The present research was supported by the Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University (Grant No. 152022) and Natural Science Foundation of Gansu Province (Grant No. 17JR5RA090).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wan, C. Q., Yan, H. J., Wang, Z. J., Yang, J. Polyhedron 2014, 83, 116–121; https://doi.org/10.1016/j.poly.2014.05.043.Search in Google Scholar

2. Wang, D. F., Zhang, T., Dai, S. M., Huang, R. B., Zheng, L. S. Inorg. Chim. Acta 2014, 423, 193–200; https://doi.org/10.1016/j.ica.2014.08.013.Search in Google Scholar

3. Mao, S. S., Shen, K. S., Shi, X. K., Xu, Y. L., Wu, H. L. Appl. Organomet. Chem. 2017, 31, e3747; https://doi.org/10.1002/aoc.3747.Search in Google Scholar

4. Shao, M., Li, M. X., Wang, Z. X., He, X., Zhang, H. H. Cryst. Growth Des. 2017, 17, 6281–6290; https://doi.org/10.1021/acs.cgd.7b00967.Search in Google Scholar

5. Yue, Q., Liu, X., Guo, W. X., Gao, E. Q. CrystEngComm 2018, 20, 4258–4267; https://doi.org/10.1039/c8ce00692j.Search in Google Scholar

6. Lee, J., Kang, Y. J., Cho, N. S., Park, K. M. Cryst. Growth Des. 2016, 16, 996–1004; https://doi.org/10.1021/acs.cgd.5b01544.Search in Google Scholar

7. Song, Y., Fan, R. Q., Gao, S., Wang, X. M., Wang, P., Yang, Y. L., Wang, Y. L. Inorg. Chem. Commun. 2015, 53, 34–41.10.1016/j.inoche.2015.01.004Search in Google Scholar

8. Yao, S. L., Zheng, T. F., Tian, X. M., Liu, S. J., Cao, C., Zhu, Z. H., Chen, Y. Q., Chen, J. L., Wen, H. R. CrystEngComm 2018, 20, 5822–5832; https://doi.org/10.1039/c8ce01261j.Search in Google Scholar

9. Zhao, X. X., Liu, D., Li, Y. H., Cui, G. H. Polyhedron 2018, 156, 200–207; https://doi.org/10.1016/j.poly.2018.09.041.Search in Google Scholar

10. Li, J. X., Qin, Z. B., Li, Y. H., Cui, G. H. Polyhedron 2018, 151, 530–536; https://doi.org/10.1016/j.poly.2018.06.019.Search in Google Scholar

11. Rice, C. A., Colon, B. L., Alp, M., Göker, H., Boykin, D. W., Kyle, D. E. Antimicrob. Agents Chemother. 2015, 59, 2037–2044; https://doi.org/10.1128/aac.05122-14.Search in Google Scholar

12. Chang, H. N., Hou, S. X., Cui, G. H. J. Inorg. Organomet. Polym. Mater. 2017, 27, 518–527; https://doi.org/10.1007/s10904-016-0494-4.Search in Google Scholar

13. Hao, J. M., Yu, B. Y., Hecke, K. V., Cui, G. H. CrystEngComm 2015, 17, 2279–2293; https://doi.org/10.1039/c4ce02090a.Search in Google Scholar

14. Wang, J. W., Cui, G. H., Qin, L., Xiao, S. L. Z. Naturforsch. 2013, 68b, 250–256; https://doi.org/10.5560/znb.2013-2319.Search in Google Scholar

15. Zhang, D. C., Li, X. CrystEngComm 2017, 19, 6673–6680; https://doi.org/10.1039/c7ce01618b.Search in Google Scholar

16. Mikata, Y., Ohnishi, R., Nishijima, R., Konno, H. Inorg. Chem. 2016, 55, 11440–11446; https://doi.org/10.1021/acs.inorgchem.6b01967.Search in Google Scholar PubMed

17. Devi, M., Dhir, A., Pradeepa, C. P. New J. Chem. 2016, 40, 1269–1277; https://doi.org/10.1039/c5nj02175h.Search in Google Scholar

18. Zhu, R. R., Wang, T., Wang, D. W., Yan, T., Wang, Q., Li, H. X., Xue, Z., Zhou, J., Du, L., Zhao, Q. H. New J. Chem. 2019, 43, 1494–1504; https://doi.org/10.1039/c8nj05508d.Search in Google Scholar

19. Gupta, A. K., Tomar, K., Bharadwaj, P. K. New J. Chem. 2017, 41, 14505–14515; https://doi.org/10.1039/c7nj02651j.Search in Google Scholar

20. Hu, Y., Ding, M., Liu, X. Q., Sun, L. B., Jiang, H. L. Chem. Commun. 2016, 52, 5734–5737; https://doi.org/10.1039/c6cc01597b.Search in Google Scholar PubMed

21. Liu, X. J., Wang, X., Xu, J. L., Tian, D., Chen, R. Y., Xu, J., Bu, X. H. Dalton Trans. 2017, 46, 4893–4897; https://doi.org/10.1039/c7dt00330g.Search in Google Scholar

22. Qu, Y., Wang, C., Zhao, K., Wu, Y. C., Huang, G. Z., Han, X. T., Wu, H. L. J. Coord. Chem. 2019, 72, 3046–3056; https://doi.org/10.1080/00958972.2019.1675049.Search in Google Scholar

23. Qu, Y., Zhao, K., Wang, C., Wu, Y. C., Xia, L. X., Wu, H. L. J. Mol. Struct. 2020, 1203, 127424; https://doi.org/10.1016/j.molstruc.2019.127424.Search in Google Scholar

24. Mao, S. S., Han, X. T., Li, C., Xu, Y. L., Shen, K. S., Shi, X. K., Wu, H. L. Spectrochim. Acta A 2018, 203, 408–414; https://doi.org/10.1016/j.saa.2018.06.003.Search in Google Scholar

25. Tang, X., Mao, S. S., Shi, X. K., Shen, K. S., Wu, H. L. Z. Naturforsch 2017, 72b, 281–288; https://doi.org/10.1515/znb-2016-0233.Search in Google Scholar

26. Xu, Y. L., Shen, K. S., Mao, S. S., Shi, X. K., Wu, H. L., Fan, X. Y. Appl. Organomet. Chem. 2018, 32, e4041; https://doi.org/10.1002/aoc.3902.Search in Google Scholar

27. Şener, E., Turgut, H., Yalçin, I. Int. J. Pharmaceut. 1994, 110, 109–115.10.1016/0378-5173(94)90148-1Search in Google Scholar

28. Smart, Saint+. Area Detector Control and Integration Software; Bruker AXS Inc.: Madison, Wisconsin (USA), 2007.Search in Google Scholar

29. Sheldrick, G. M. Acta Crystallogr. 2008, 64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

30. Sadabs. Bruker AXS Inc.: Madison, Wisconsin (USA), 2000.Search in Google Scholar

31. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D., Spagna, R. J. Appl. Crystallogr. 2007, 40, 609–613; https://doi.org/10.1107/s0021889807010941.Search in Google Scholar

32. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

33. Tao, C. H., Ma, J. C., Zhu, L. C., Zhang, Y., Dong, W. K. Polyhedron 2017, 128, 57–67; https://doi.org/10.1016/j.poly.2017.02.040.Search in Google Scholar

34. Chai, L. Q., Li, Y. X., Chen, L. C., Zhang, J. Y., Huang, J. J. Inorg. Chim. Acta 2016, 444, 193–201; https://doi.org/10.1016/j.ica.2016.01.038.Search in Google Scholar

35. Song, X. Q., Liu, P. P., Liu, Y. A., Zhou, J. J., Wang, X. L. Dalton Trans. 2016, 45, 8154–8163; https://doi.org/10.1039/c6dt00212a.Search in Google Scholar PubMed

36. Wu, H. L., Yuan, J. K., Bai, Y., Pan, G. L., Wang, H., Shu, X. B. J. Photochem. Photobio. B 2012, 107, 65–72; https://doi.org/10.1016/j.jphotobiol.2011.11.010.Search in Google Scholar PubMed

37. Ren, Z. L., Hao, J., Hao, P., Dong, X. Y., Bai, Y., Dong, W. K. Z. Naturforsch 2018, 73b, 203–210; https://doi.org/10.1515/znb-2017-0191.Search in Google Scholar

38. Dong, Y. J., Ma, J. C., Zhu, L. C., Dong, W. K., Zhang, Y. J. Coord. Chem. 2017, 70, 103–115; https://doi.org/10.1080/00958972.2016.1262537.Search in Google Scholar

39. Wu, H. L., Zhang, Y. H., Chen, C. Y., Zhang, J. W., Bai, Y. C., Shi, F. R., Wang, X. L. New J. Chem. 2014, 38, 3688–3698; https://doi.org/10.1039/c4nj00503a.Search in Google Scholar

40. Pu, L. M., Long, H. T., Zhang, Y., Bai, Y., Dong, W. K. Polyhedron 2017, 128, 57–67; https://doi.org/10.1016/j.poly.2017.02.033.Search in Google Scholar

41. Zhang, J., Zhang, Y., Zhang, S. T., Dong, X. Y., Dong, W. K. Asian. J. Chem. 2015, 27, 654–656; https://doi.org/10.14233/ajchem.2015.17547.Search in Google Scholar

42. Dong, W. K., Ma, J. C., Zhu, L. C., Zhang, Y., Li, X. L. Inorg. Chim. Acta 2016, 445, 140–148; https://doi.org/10.1016/j.ica.2016.02.043.Search in Google Scholar

43. Dong, W. K., Zhang, J., Zhang, Y., Li, N. Inorg. Chim. Acta 2016, 444, 95–102; https://doi.org/10.1016/j.ica.2016.01.034.Search in Google Scholar

44. Zhou, Y. L., Zeng, M. H., Ng, S. W. Acta Crystallogr. 2009, E66, m57; https://doi.org/10.1107/s1600536809052738.Search in Google Scholar

45. Wang, C. R., Yang, X. P., Wang, S. Q., Schipper, D., Jones, R. A. Cryst. Growth Des. 2019, 19, 2149–2154; https://doi.org/10.1021/acs.cgd.8b01766.Search in Google Scholar

46. Jiang, D. M., Yang, X. P., Chen, H. F., Wang, F., Wang, S. Q., Zhu, T., Zhang, L. J., Huang, S. M. Dalton Trans. 2019, 48, 2206–2212; https://doi.org/10.1039/c8dt04942d.Search in Google Scholar PubMed

47. Shen, K. S., Han, X. T., Li, C., Huang, G. Z., Mao, S. S., Shi, X. K., Wu, H. L. J. Coord. Chem. 2018, 71, 980–990; https://doi.org/10.1080/00958972.2018.1454593.Search in Google Scholar

48. Zhao, K., Qu, Y., Wu, Y. C., Wang, C., Shen, K. S., Li, C., Wu, H. L. Transit. Metal Chem. 2019, 44, 713–720; https://doi.org/10.1007/s11243-019-00340-4.Search in Google Scholar

49. Yang, L., Powell, D. R., Houser, R. P. Dalton Trans. 2007, 9, 955–964; https://doi.org/10.1039/b617136b.Search in Google Scholar PubMed

50. Sun, D., Wei, Z. H., Yang, C. F., Wang, D. F., Zhang, N., Huang, R. B., Zheng, L. S. CrystEngComm 2011, 13, 1591–1601; https://doi.org/10.1039/c0ce00539h.Search in Google Scholar

51. Yang, P., Wu, X. X., Huo, J. Z., Ding, B., Wang, Y., Wang, X. G. CrystEngComm 2013, 15, 8097–8109; https://doi.org/10.1039/c3ce40946e.Search in Google Scholar

52. Karmakar, A., Paul, A., Mahmudov, K. T., Guedes da Silva, M. F. C., Pombeiro, A. J. L. New J. Chem. 2016, 40, 1535–1546; https://doi.org/10.1039/c5nj02411k.Search in Google Scholar

53. Jadhav, A. N., Pawal, S. B., Chavan, S. S. Inorg. Chim. Acta 2016, 440, 77–83; https://doi.org/10.1016/j.ica.2015.10.026.Search in Google Scholar

54. Yao, P. F., Liu, H. F., Huang, F. P., Feng, F. L., Qin, X. H., Huang, M. L., Yu, Q., Bian, H. D. CrystEngComm 2016, 18, 938–947; https://doi.org/10.1039/c5ce02236c.Search in Google Scholar

55. Erer, H., Karaçam, S., Arıcı, M., Yesilel, O. Z., Çelik, Ö. Polyhedron 2015, 98, 180–189; https://doi.org/10.1016/j.poly.2015.06.011.Search in Google Scholar

56. Tong, H., Dong, Y. Q., Hong, Y. N., Häussler, M., Lam, J. W. Y., Sung, H. H. Y., Yu, X. M., Sun, J. X., Williams, I. D., Kwok, H. S., Tang, B. Z. J. Phys. Chem. C 2007, 111, 2287–2294; https://doi.org/10.1021/jp0630828.Search in Google Scholar

57. Wang, W. L., Xu, J. W., Sun, Z., Zhang, X. H., Lu, Y., Lai, Y. H. Macromolecules 2006, 39, 7277–7285; https://doi.org/10.1021/ma060510z.Search in Google Scholar

Received: 2020-06-05
Accepted: 2020-09-10
Published Online: 2020-11-03
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.5.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0094/html
Scroll to top button