Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 4, 2020

Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination

  • Petra Krieger-Beck , Jörg Daniels and Johannes Beck ORCID logo EMAIL logo

Abstract

Carbon subsulfide C3S2 can be produced on a preparative scale by flash vacuum pyrolysis (FVP). The precursor 5-(methylthio)-3H-1,2-dithiole-3-thione (C4H4S4) proved to be particularly suitable and yields up to 8% could be achieved on evaporation at T = 180 °C and pyrolysis of the vapour at 950 °C. The other precursors tested, C4S6 and C6S8, were far less productive. Insight into the thermal conversion of C4S6 was gained by isolation and structure determination of a new isomer of the sulur-carbon compound C8S8, which is formed on thermal treatment of C4S6 at T = 330 °C. The formation of C8S8 can be interpreted by sulfur cleavage from C4S6. Crystal growth by sublimation below 0 °C allowed for the determination of the crystal structure of C3S2. The five-atomic molecules are linear and arranged in a typical pattern analogous to the crystal structures of I2, CS2 and CSe2. The reaction of C3S2 with bromine is known to give C3Br6S2 of yet unknown structure. By sublimation of C3Br6S2 in air, 4,5-dibromo-1,2-dithiol-3-one (C3Br2OS2) was obtained, representing the product of bromine abstraction and oxidation. This substantiates the former suggestion for C3Br6S2 to have the structure of a hexabromodithiolane.


Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.



Corresponding author: Johannes Beck, Universität Bonn, Institut für Anorganische Chemie, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany, E-mail:

Funding source: German Research Council (DFG)

Acknowledgement

The authors thank G. Dittmann for dedicated laboratory work and A. Roloff for the collection of the diffraction data of C3Br2OS2.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The fincial support by the German Research Council (DFG) within the Collaborative Research Area SFB 408 is gratefully acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Diels, O., Wolf, B. Ber. Dtsch. Chem. Ges. 1906, 39, 689; https://doi.org/10.1002/cber.190603901103.Search in Google Scholar

2. Birkofer, L., Sommer, P. Chem. Ber. 1976, 109, 1701; https://doi.org/10.1002/cber.19761090514.Search in Google Scholar

3. Ballauff, M., Li, L., Rosenfeldt, S., Dingenouts, N., Beck, J., Krieger-Beck, P. Angew. Chem. Int. Ed. 2004, 43, 5843; https://doi.org/10.1002/anie.200460263.Search in Google Scholar PubMed

4. Schmedt auf der Günne, J., Beck, J., Hoffbauer, W., Krieger-Beck, P. Chem. Eur J. 2005, 11, 4429; https://doi.org/10.1002/chem.200401133.Search in Google Scholar PubMed

5. Lengyel B, v. Ber. Dtsch. Chem. Ges. 1893, 26, 2960; https://doi.org/10.1002/cber.189302603124.Search in Google Scholar

6. Stock, A., Brandt, A., Fischer, H. Ber. Dtsch. Chem. Ges. 1925, 58, 643; https://doi.org/10.1002/cber.19250580402.Search in Google Scholar

7. Cataldo, F. Inorg. Organomet. Polym. Mater. 2006, 16, 15; https://doi.org/10.1007/s10904-006-9031-1.Search in Google Scholar

8. Quellhorst, H., Binnewies, M. Z. Anorg. Allg. Chem. 1996, 622, 259; https://doi.org/10.1002/zaac.19966220210.Search in Google Scholar

9. Stadlbauer, W., Kappe, T. Sulfur Rep. 1999, 21, 423; https://doi.org/10.1080/01961779908047951.Search in Google Scholar

10. Wentrup, C. Aust. J. Chem. 2014, 67, 1150; https://doi.org/10.1071/ch14096.Search in Google Scholar

11. Pedersen, C. Th., Flammang, R., Gerbaux, P., Fanghänel, E. J. Chem. Soc. Perkin Trans. 1998, 2, 1403; https://doi.org/10.1039/a800654g.Search in Google Scholar

12. Beck, J., Krieger-Beck, P., Kelm, K. Z. Naturforsch 2006, 61b, 123; https://doi.org/10.1515/znb-2006-0202.Search in Google Scholar

13. Beck, J., Daniels, J., Roloff, A., Wagner, N. Dalton Trans. 2006, 1174; https://doi.org/10.1039/b511746a.Search in Google Scholar PubMed

14. Kordts, B., Richter, A. M., Fanghänel, E. Monatsh. Chem. 1991, 122, 71; https://doi.org/10.1007/bf00815167.Search in Google Scholar

15. Gompper, R., Knieler, R., Polborn, K. Z. Naturforsch. 1993, 48b, 1621; https://doi.org/10.1515/znb-1993-1122.Search in Google Scholar

16. Doxsee, D. D., Galloway, C., Rauchfuss, T., Wilson, S., Yang, X. Inorg. Chem. 1993, 32, 5467; https://doi.org/10.1021/ic00076a011.Search in Google Scholar

17. Beck, J, Weber, J., Mukhopadhyay, A. B., Dolg, M. New J. Chem. 2005, 29, 465; https://doi.org/10.1039/b402881c.Search in Google Scholar

18. Pedersen, C. T., De Rossi, R. H., Aimar, M. L. Sulfur Lett. 1998, 21, 139.Search in Google Scholar

19. Lu, F. L., Keshavarz, -K. M., Srdanov, G., Jacobson, R. H., Wudl, F. J. Org. Chem. 1989, 54, 2165; https://doi.org/10.1021/jo00270a028.Search in Google Scholar

20. Baggio, R., Aimar, L. L., De Rossi, R. H., Suescun, L. Acta Crystallogr. 1998, C54, 1902; https://doi.org/10.1107/s0108270198007793.Search in Google Scholar

21. Daly, J. J. J. Chem. Soc. A 1967, 1913; https://doi.org/10.1039/j19670001913.Search in Google Scholar

22. Ellern, Y., Drews, T., Seppelt, K. Z. Anorg. Allg. Chem. 2001, 627, 73; https://doi.org/10.1002/1521-3749(200101)627:1<73::aid-zaac73>3.0.co;2-a.10.1002/1521-3749(200101)627:1<73::AID-ZAAC73>3.0.CO;2-ASearch in Google Scholar

23. Holland, F., Winnewisser, M., Jarman, C., Kroto, H., Yamada, K. M. T. J. Mol. Spectrosc. 1988, 130, 344; https://doi.org/10.1016/0022-2852(88)90082-3.Search in Google Scholar

24. Smith, W., Hayden, L., George, E. J. Chem. Phys. 1966, 45, 1778; https://doi.org/10.1063/1.1727828.Search in Google Scholar

25. Baenziger, N. C., Duax, W. L. J. Chem. Phys. 1968, 48, 2974; https://doi.org/10.1063/1.1669561.Search in Google Scholar

26. Powell, B. M., Dolling, G., Torrie, B. H. Acta Crystallogr. 1982, B38, 28; https://doi.org/10.1107/s0567740882001976.Search in Google Scholar

27. Powell, B. M., Torrie, B. H. Acta Crystallogr. 1983, C39, 963; https://doi.org/10.1107/s0108270183007015.Search in Google Scholar

28. Stadlbauer, W., Kappe, T., Ziegler, E. Z. Naturforsch 1977, 32b, 893; https://doi.org/10.1515/znb-1977-0813.Search in Google Scholar

29. He, X., McElwee Reeve, A., Desai, U. R., Kellogg, G. E., Reynolds, K. A. Antimicrob. Agents Chemother. 2004, 48, 3093; https://doi.org/10.1128/aac.48.8.3093-3102.2004.Search in Google Scholar

30. Boukebbous, K., Laifa, E. A., De Mallmann, A., Taoufik, M. IUCrData 2016, 1, x161820; https://doi.org/10.1107/s2414314616017089.Search in Google Scholar

31. Sheldrick, G. M. Shelxs-93, Program for Crystal Structure Solution and Shelxl-2018, Program for Crystal Structure Refinement; University of Göttingen: Göttingen (Germany), 1993, 2018.Search in Google Scholar

32. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

33. Sheldrick, G. M. Acta Crystallogr. 2013, A69, s74; https://doi.org/10.1107/s0108767313099364.Search in Google Scholar

34. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0149).


Received: 2020-08-26
Accepted: 2020-09-19
Published Online: 2020-11-04
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0149/html
Scroll to top button