Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 2, 2020

Evaluation of U(VI) adsorption from Ca2+ coexisted bicarbonate solution by synthetic inorganic and mineral materials

  • Jun Liu , Shilong Shi , XiaoYu Yin , Yong Jin , Chunhai Lu , Qingxian Zhang EMAIL logo , Jijun Yang , Jiali Liao , Yuanyou Yang , Chunhai Liu and Ning Liu EMAIL logo
From the journal Radiochimica Acta

Abstract

Part weakly alkaline natural uranium-containing water contains abundant Ca2+ and (bi)carbonate. Herein, two kinds of materials, namely mesoporous hydrous manganese dioxide (MHMO) and polyacrylonitrile (PAN)/dolomite composites were synthesized and characterized to evaluate their adsorption behaviors of U(VI) from Ca2+ coexisted bicarbonate solution. Characterization results showed that both samples exhibited good structural stability after U(VI) load. MHMO could coordinate U(VI) through the surface –OH sites, whereas an unfavorable U(VI) adsorption onto mineral composites was deduced. Adsorption tests indicated that increasing Ca2+ and (bi)carbonate amounts suppress U(VI) adsorption process, and ∼19.0 mg/g U adsorbed by MHMO could be obtained in solutions with 1 mmol/L [Ca2+], 5 mmol/L [CO3]T, 50 mg/L [U(VI)]initial at pH 8.0. Moreover, a heterogeneous surface chemical adsorption was verified through kinetics and isotherms study. Results from our study should be useful in exploring the adsorption behaviors and mechanisms of U(VI) on selected inorganic and mineral materials from natural uranium-containing water.


Corresponding authors: Qingxian Zhang, College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610059, PR China, E-mail: , and Ning Liu, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China, E-mail:

Funding source: Foundation of Key Laboratory of Radiation PhysicsTechnology of the Ministry of EducationNational Natural Science Foundation of ChinaNational Fund of China for Fostering Talents in Basic Science

Award Identifier / Grant number: (2018SCURPT07)

Award Identifier / Grant number: (22006004, 21876123, 41774190)

Award Identifier / Grant number: (J1210004)

Acknowledgments

This work was supported by the Foundation of Key Laboratory of Radiation Physics and Technology of the Ministry of Education (2018SCURPT07), the National Natural Science Foundation of China (Grant No. 22006004, 21876123, 41774190) and the National Fund of China for Fostering Talents in Basic Science (J1210004).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yingkai, X., Weiguo, L., Yinmin, Z., Yunhui, W., Shirodkar, P.V. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China. Chin. J. Oceanol. Limnol. 2000, 18, 169. https://doi.org/10.1007/bf02842577.Search in Google Scholar

2. LI, Y.-F., YAO, T.-D., Li-de, T., Wu-sheng, Y. Spatial variation of uranium contents in natural waters of the Qinghai-Xizang Plateau Geochimica 2003, 32, 445.Search in Google Scholar

3. Endrizzi, F., Rao, L. Chemical speciation of uranium(VI) in marine environments: complexation of calcium and magnesium ions with [(UO2)(CO3)3]4− and the effect on the extraction of uranium from seawater. Chem. Eur J. 2014, 20, 14499. https://doi.org/10.1002/chem.201403262.Search in Google Scholar

4. Kim, J., Tsouris, C., Oyola, Y., Janke, C.J., Mayes, R.T., Dai, S., Gill, G., Kuo, L.-J., Wood, J., Choe, K.-Y., Schneider, E., Lindner, H. Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind. Eng. Chem. Res. 2014, 53. https://doi.org/10.1021/ie4039828.Search in Google Scholar

5. Krauskopf, K.B. Factors controlling the concentrations of thirteen rare metals in sea-water. Geochim. Cosmochim. Ac 1956, 9, 1, https://doi.org/10.1016/0016-7037(56)90055-2.Search in Google Scholar

6. Liao, W., Wang, H., Li, F., Zhao, C., Liu, J., Liao, J., Yang, J., Yang, Y., Liu, N. MnO2-loaded microorganism-derived carbon for U(VI) adsorption from aqueous solution. Environ. Sci. Pollut. Res. 2019, 26, 3697. https://doi.org/10.1007/s11356-018-3887-9.Search in Google Scholar

7. Crespo, M.T., Acena, M.L., Garcia-Torano, E. Adsorption of some actinide elements on MnO2. Sci. Total Environ. 1988, 70, 253. https://doi.org/10.1016/0048-9697(88)90263-x.Search in Google Scholar

8. Wang, Z., Lee, S.-W., Catalano, J.G., Lezama-Pacheco, J.S., Bargar, J.R., Tebo, B.M., Giammar, D.E. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling. Environ. Sci. Technol. 2013, 47, 850. https://doi.org/10.1021/es304454g.Search in Google Scholar PubMed

9. Dimiropoulos, V., Katsoyiannis, I.A., Zouboulis, A.I., Noli, F., Simeonidis, K., Mitrakas, M. Enhanced U(VI) removal from drinking water by nanostructured binary Fe/Mn oxy-hydroxides. J. Water. Process. Eng. 2015, 7, 227. https://doi.org/10.1016/j.jwpe.2015.06.014.Search in Google Scholar

10. Zhang, J., Guo, Z., Li, Y., Pan, S., Chen, X., Xu, J. Effect of environmental conditions on the sorption of uranium on Fe3O4@MnO2 hollow spheres. J. Mol. Liq. 2016, 223, 534. https://doi.org/10.1016/j.molliq.2016.07.136.Search in Google Scholar

11. Yang, C., Niu, D., Zhong, Y., Li, L., Lv, H., Liu, Y. Adsorption of uranium by hydrous manganese dioxide from aqueous solution. J. Radioanal. Nucl. Chem. 2018, 315, 533–542. https://doi.org/10.1007/s10967-018-5705-8.Search in Google Scholar

12. Xiu, T., Liu, Z., Yang, L., Wang, Y. Removal of thorium and uranium from aqueous solution by adsorption on hydrated manganese dioxide. J. Radioanal. Nucl. Chem. 2019, 321, 671. https://doi.org/10.1007/s10967-019-06634-2.Search in Google Scholar

13. Albadarin, A.B., Mangwandi, C., Al-Muhtaseb, A.a.H., Walker, G.M., Allen, S.J., Ahmad, M.N.M. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Eng. J. 2012, 179, 193. https://doi.org/10.1016/j.cej.2011.10.080.Search in Google Scholar

14. Karaca, S., Gürses, A., Ejder, M., Açıkyıldız, M. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J. Colloid Interface Sci. 2004, 277, 257. https://doi.org/10.1016/j.jcis.2004.04.042.Search in Google Scholar

15. Ghaemi, A., Torab-Mostaedi, M., Ghannadi-Maragheh, M. Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder. J. Hazard Mater. 2011, 190, 916. https://doi.org/10.1016/j.jhazmat.2011.04.006.Search in Google Scholar

16. Boucif, F., Marouf-Khelifa, K., Batonneau-Gener, I., Schott, J., Khelifa, A. Preparation, characterisation of thermally treated Algerian dolomite powders and application to azo-dye adsorption. Powder Technol. 2010, 201, 277. https://doi.org/10.1016/j.powtec.2010.04.013.Search in Google Scholar

17. Liu, J., Zhao, C., Yuan, G., Dong, Y., Yang, J., Li, F., Liao, J., Yang, Y., Liu, N. Adsorption of U(VI) on a chitosan/polyaniline composite in the presence of Ca/Mg-U(VI)-CO3 complexes. Hydrometallurgy 2018, 175, 300. https://doi.org/10.1016/j.hydromet.2017.12.013.Search in Google Scholar

18. Liu, J., Zhao, C., Wang, J., He, H., Yuan, G., Wang, H., Yang, J., Liao, J., Yang, Y., Liu, N. Adsorption of U(VI) from eutrophic aqueous solutions in a U(VI)-P-CO3 system with hydrous titanium dioxide supported by polyacrylonitrile fiber. Hydrometallurgy 2019, 183, 29. https://doi.org/10.1016/j.hydromet.2018.11.009.Search in Google Scholar

19. Wang, G., Liu, J., Wang, X., Xie, Z., Deng, N. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J. Hazard Mater. 2009, 168, 1053. https://doi.org/10.1016/j.jhazmat.2009.02.157.Search in Google Scholar

20. Komeily-Nia, Z., Montazer, M., Aye, S.S.S., Nasri-Nasrabadi, B. A practical approach to load CuO/MnO2 core/shell nanostructures on textiles through in situ wet chemical synthesis. Colloids Surf., A 2019, 583, 123998. https://doi.org/10.1016/j.colsurfa.2019.123998.Search in Google Scholar

21. Ho, C.H., Miller, N.H. Adsorption of uranyl species from bicarbonate solution onto hematite particles. J. Colloid Interface Sci. 1986, 110, 165. https://doi.org/10.1016/0021-9797(86)90365-6.Search in Google Scholar

22. Wan, S., Ma, M., Lv, L., Qian, L., Xu, S., Xue, Y., Ma, Z. Selective capture of thallium(I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chem. Eng. J. 2014, 239, 200. https://doi.org/10.1016/j.cej.2013.11.010.Search in Google Scholar

23. Nekhunguni, P.M., Tavengwa, N.T., Tutu, H. Sorption of uranium(VI) onto hydrous ferric oxide-modified zeolite: assessment of the effect of pH, contact time, temperature, selected cations and anions on sorbent interactions. J. Environ. Manag. 2017, 204, 571. https://doi.org/10.1016/j.jenvman.2017.09.034.Search in Google Scholar PubMed

24. Zhao, G., Li, J., Jiang, L., Dong, H., Wang, X., Hu, W. Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci. 2012, 3, 433. https://doi.org/10.1039/c1sc00722j.Search in Google Scholar

25. Zhu, Q., Li, Z. Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water. Chem. Eng. J. 2015, 281, 69. https://doi.org/10.1016/j.cej.2015.06.068.Search in Google Scholar

26. Liu, W., Dai, X., Bai, Z., Wang, Y., Yang, Z., Zhang, L., Xu, L., Chen, L., Li, Y., Gui, D., Diwu, J., Wang, J., Zhou, R., Chai, Z., Wang, S. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal–organic framework equipped with abundant lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 2017, 51, 3911. https://doi.org/10.1021/acs.est.6b06305.Search in Google Scholar PubMed

27. Kar, A.S., Saha, A., Chandane, A., Kumar, S., Tomar, B.S. Effect of carbonate on U (VI) sorption by nano-crystalline α-MnO2. Radiochim. Acta 2018, 106, 191. https://doi.org/10.1515/ract-2017-2817.Search in Google Scholar

28. Sun, Y., Li, J., Wang, X. The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochem. Cosmochim. Acta 2014, 140, 621. https://doi.org/10.1016/j.gca.2014.06.001.Search in Google Scholar

29. Hua, M., Yang, B., Shan, C., Zhang, W., He, S., Lv, L., Pan, B. Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite. Chemosphere 2017, 171, 126. https://doi.org/10.1016/j.chemosphere.2016.12.051.Search in Google Scholar PubMed

30. Liu, J., Zhao, C., Tu, H., Yang, J., Li, F., Li, D., Liao, J., Yang, Y., Tang, J., Liu, N. U(VI) adsorption onto cetyltrimethylammonium bromide modified bentonite in the presence of U(VI)-CO3 complexes. Appl. Clay Sci. 2017, 135, 64. https://doi.org/10.1016/j.clay.2016.09.005.Search in Google Scholar

31. Wazne, M., Korfiatis, G.P., Meng, X. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ. Sci. Technol. 2003, 37, 3619. https://doi.org/10.1021/es034166m.Search in Google Scholar PubMed

32. Sprynskyy, M., Kovalchuk, I., Buszewski, B. The separation of uranium ions by natural and modified diatomite from aqueous solution. J. Hazard Mater. 2010, 181, 700. https://doi.org/10.1016/j.jhazmat.2010.05.069.Search in Google Scholar PubMed

33. Li, H., Zhai, F., Gui, D., Wang, X., Wu, C., Zhang, D., Dai, X., Deng, H., Su, X., Diwu, J., Lin, Z., Chai, Z., Wang, S. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Appl. Catal. B Environ. 2019, 254, 47. https://doi.org/10.1016/j.apcatb.2019.04.087.Search in Google Scholar

34. Carvajal, D.A., Katsenovich, Y.P., Lagos, L.E. The effects of aqueous bicarbonate and calcium ions on uranium biosorption by Arthrobacter G975 strain. Chem. Geol. 2012, 330–331, 51. https://doi.org/10.1016/j.chemgeo.2012.08.018.Search in Google Scholar

35. Metwally, E., Rahman, R.O.A., Ayoub, R.R. Modeling batch kinetics of cesium, cobalt and strontium ions adsorption from aqueous solutions using hydrous titanium oxide. Radiochim. Acta 2007, 95, 409. https://doi.org/10.1524/ract.2007.95.7.409.Search in Google Scholar

36. Zheng, T., Yang, Z., Gui, D., Liu, Z., Wang, X., Dai, X., Liu, S., Zhang, L., Gao, Y., Chen, L., Sheng, D., Wang, Y., Diwu, J., Wang, J., Zhou, R., Chai, Z., Albrecht-Schmitt, T.E., Wang, S. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat. Commun. 2017, 8, 15369. https://doi.org/10.1038/ncomms15369.Search in Google Scholar PubMed PubMed Central

37. Zhang, H., Liu, W., Li, A., Zhang, D., Li, X., Zhai, F., Chen, L., Chen, L., Wang, Y., Wang, S. Three mechanisms in one material: uranium capture by a polyoxometalate–organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem. Int. Ed. 2019, 58, 16110. https://doi.org/10.1002/anie.201909718.Search in Google Scholar PubMed

38. Nilchi, A., Shariati Dehaghan, T., Rasouli Garmarodi, S. Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 2013, 321, 67. https://doi.org/10.1016/j.desal.2012.06.022.Search in Google Scholar

39. Tsydenov, D.E., Shutilov, A.A., Zenkovets, G.A., Vorontsov, A.V. Hydrous TiO2 materials and their application for sorption of inorganic ions. Chem. Eng. J. 2014, 251, 131. https://doi.org/10.1016/j.cej.2014.04.058.Search in Google Scholar

40. El-Deen, S.E.A.S., Moussa, S.I., Mekawy, Z.A., Shehata, M.K.K., Sadeek, S.A., Someda, H.H. Evaluation of CNTs/MnO2 composite for adsorption of 60Co(II), 65Zn(II) and Cd(II) ions from aqueous solutions. Radiochim. Acta 2017, 105, 43, https://doi.org/10.1515/ract-2016-2624.Search in Google Scholar

Received: 2020-07-14
Accepted: 2020-09-18
Published Online: 2020-11-02
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0074/html
Scroll to top button