Skip to main content
Log in

Improving the Delivery of Levodopa in Parkinson’s Disease: A Review of Approved and Emerging Therapies

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Levodopa is the most effective drug for the treatment of Parkinson’s disease, but its use as an oral medication is complicated by its erratic absorption, extensive metabolism and short plasma half-life. On long-term use and with disease progression, there is a high incidence of motor and non-motor complications, which remain a major clinical and research challenge. It is widely accepted that levodopa needs to be administered using formulations that result in good and consistent bioavailability and the physiologically relevant and continuous formation of dopamine in the brain to maximise its efficacy while avoiding and reversing ‘wearing off’ and dyskinesia. However, the physicochemical properties of levodopa along with its pharmacokinetic and pharmacodynamic profile make it difficult to deliver the drug in a manner that fulfils these criteria. In this review, we examine the problems associated with the administration of levodopa in Parkinson’s disease and how the use of novel technologies and delivery devices is leading to a more consistent and sustained levodopa delivery with the aim of controlling motor function as well as non-motor symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson's disease: scientific rationale and clinical implications. Lancet Neurol. 2006;5:677–87. https://doi.org/10.1016/S1474-4422(06)70521-X.

    Article  CAS  PubMed  Google Scholar 

  2. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primer. 2017;3:1–21. https://doi.org/10.1038/nrdp.2017.13.

    Article  Google Scholar 

  3. Antonini A, Poewe W, Chaudhuri KR, Jech R, Pickut B, Pirtošek Z, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson's: final results of the GLORIA registry. Parkinsonism Relat Disord. 2017;45:13–20. https://doi.org/10.1016/j.parkreldis.2017.09.018.

    Article  PubMed  Google Scholar 

  4. Kalia LV, Lang AE. Parkinson's disease. Lancet. 2015;386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3.

    Article  CAS  PubMed  Google Scholar 

  5. Cedarbaum JM. The promise and limitations of controlled-release oral levodopa administration. Clin Neuropharmacol. 1989;12(3):147–66.

    Article  CAS  PubMed  Google Scholar 

  6. Gray R, Ives N, Rick C, Patel S, Gray A, Jenkinson C, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson's disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384(9949):1196–205. https://doi.org/10.1016/S0140-6736(14)60683-8.

    Article  CAS  PubMed  Google Scholar 

  7. de Bie RMA, Clarke CE, Espay AJ, Fox SH, Lang AE. Initiation of pharmacological therapy in Parkinson's disease: when, why, and how. Lancet Neurol. 2020;19(5):452–61. https://doi.org/10.1016/s1474-4422(20)30036-3.

    Article  CAS  PubMed  Google Scholar 

  8. Politis M, Wu K, Molloy S, Bain PG, Chaudhuri KR, Piccini P. Parkinson's disease symptoms: the patient's perspective. Move Disord. 2010. https://doi.org/10.1002/mds.23135.

    Article  Google Scholar 

  9. Cenci MA, Riggare S, Pahwa R, Eidelberg D, Hauser RA. Dyskinesia matters. Move Disord. 2020;35(3):39–46. https://doi.org/10.1002/mds.27959.

    Article  Google Scholar 

  10. Horne MK, Butler EG, Gilligan BS, Wodak J, Stark RJ, Brazenor GA. Intraventricular infusion of dopamine in Parkinson's disease. Ann Neurol. 1989;26:792–4. https://doi.org/10.1002/ana.410260620.

    Article  CAS  PubMed  Google Scholar 

  11. Poewe W, Antonini A, Zijlmans JC, Burkhard PR, Vingerhoets F. Levodopa in the treatment of Parkinson's disease: an old drug still going strong. Clin Interv Aging. 2010;5:229–38. https://doi.org/10.2147/cia.s6456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ray Chaudhuri K, Qamar MA, Rajah T, Loehrer P, Sauerbier A, Odin P, et al. Non-oral dopaminergic therapies for Parkinson’s disease: current treatments and the future. NPJ Parkinsons Dis. 2016;2:16023. https://doi.org/10.1038/npjparkd.2016.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mukherjee A, Biswas A, Das SK. Gut dysfunction in Parkinson's disease. World J Gastroenterol. 2016;22(25):5742–52. https://doi.org/10.3748/wjg.v22.i25.5742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hashim H, Azmin S, Razlan H, Yahya NW, Tan HJ, Manaf MRA, et al. Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson's disease. PLoS One. 2014. https://doi.org/10.1371/journal.pone.0112330.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nutt JG, Fellman JH. Pharmacokinetics of levodopa. Clin Neuropharmacol. 1984;7(1):35–49. https://doi.org/10.1097/00002826-198403000-00002.

    Article  CAS  PubMed  Google Scholar 

  16. Titova N, Qamar MA, Chaudhuri KR. The nonmotor features of Parkinson's disease. 1st ed. New York: Elsevier Inc.; 2017.

    Google Scholar 

  17. Dingemanse J. Issues important for rational COMT inhibition. Neurology. 2000;55(11 Suppl. 4):S24–S2727 (discussion S8–32).

    CAS  PubMed  Google Scholar 

  18. Cotzias GC, Papavasiliou PS, Gellene R. Modification of parkinsonism: chronic treatment with l-DOPA. N Engl J Med. 1969;280(7):337–45. https://doi.org/10.1056/NEJM196902132800701.

    Article  CAS  PubMed  Google Scholar 

  19. Hauser RA. Levodopa: past, present, and future. Eur Neurol. 2009;62(1):1–8. https://doi.org/10.1159/000215875.

    Article  CAS  PubMed  Google Scholar 

  20. Yacoubian TA. IPX066: a new intermediate- and extended-release carbidopa–levodopa formulation. Neurodegener Dis Manag. 2013;3(2):123–31. https://doi.org/10.2217/nmt.13.4.

    Article  PubMed  Google Scholar 

  21. Trenkwalder C, Kuoppamäki M, Vahteristo M, Müller T, Ellmén J. Increased dose of carbidopa with levodopa and entacapone improves "off" time in a randomized trial. Neurology. 2019;92(13):e1487–e14961496. https://doi.org/10.1212/wnl.0000000000007173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guay DRP. Tolcapone, a selective catechol-O-methyltransferase inhibitor for treatment of Parkinson's disease. Pharmacotherapy. 1999;19(1):6–20. https://doi.org/10.1592/phco.19.1.6.30516.

    Article  CAS  PubMed  Google Scholar 

  23. Stocchi F, Rascol O, Kieburtz K, Poewe W, Jankovic J, Tolosa E, et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol. 2010;68(1):18–27. https://doi.org/10.1002/ana.22060.

    Article  CAS  PubMed  Google Scholar 

  24. Fabbri M, Ferreira JJ, Lees A, Stocchi F, Poewe W, Tolosa E, et al. Opicapone for the treatment of Parkinson's disease: a review of a new licensed medicine. Mov Disord. 2018;33(10):1528–39. https://doi.org/10.1002/mds.27475.

    Article  PubMed  Google Scholar 

  25. Erni W, Held K. The hydrodynamically balanced system: a novel principle of controlled drug release. Eur Neurol. 1987;27(Suppl 1):21–7. https://doi.org/10.1159/000116171.

    Article  CAS  PubMed  Google Scholar 

  26. Koller WC, Pahwa R. Treating motor fluctuations with controlled-release levodopa preparations. Neurology. 1994;44(7 Suppl. 6):S23–S2828.

    CAS  PubMed  Google Scholar 

  27. Wilding IR, Hardy JG, Davis SS, Melia CD, Evans DF, Short AH, et al. Characterisation of the in vivo behaviour of a controlled-release formulation of levodopa (Sinemet CR). Clin Neuropharmacol. 1991;14(4):305–21.

    Article  CAS  PubMed  Google Scholar 

  28. LeWitt PA, Nelson MV, Berchou RC, Galloway MP, Kesaree N, Kareti D, et al. Controlled-release carbidopa/levodopa (Sinemet 50/200 CR4): clinical and pharmacokinetic studies. Neurology. 1989;39(11 Suppl. 2):45–53 (discussion 9).

    CAS  PubMed  Google Scholar 

  29. Marion MH, Stocchi F, Malcolm SL, Quinn NP, Jenner P, Marsden CD. Single-dose studies of a slow-release preparation of levodopa and benserazide (Madopar HBS) in Parkinson's disease. Eur Neurol. 1987;27(Suppl. 1):54–8. https://doi.org/10.1159/000116193.

    Article  PubMed  Google Scholar 

  30. Pahwa R, Lyons K, McGuire D, Silverstein P, Zwiebel F, Robischon M, et al. Comparison of standard carbidopa–levodopa and sustained-release carbidopa–levodopa in Parkinson's disease: pharmacokinetic and quality-of-life measures. Mov Disord. 1997;12(5):677–81. https://doi.org/10.1002/mds.870120508.

    Article  CAS  PubMed  Google Scholar 

  31. Sage JI, Mark MH. Pharmacokinetics of continuous-release carbidopa/levodopa. Clin Neuropharmacol. 1994;17(Suppl. 2):S1–6.

    PubMed  Google Scholar 

  32. Jankovic J, Schwartz K, Linden CV. Comparison of Sinemet CR4 and standard Sinemet: double blind and long-term open trial in parkinsonian patients with fluctuations. Move Disord. 1989;4(4):303–9. https://doi.org/10.1002/mds.870040403.

    Article  CAS  Google Scholar 

  33. Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH, et al. Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts. Ann Neurol. 2018;84(6):797–811. https://doi.org/10.1002/ana.25364.

    Article  PubMed  Google Scholar 

  34. Olanow CW, Obeso JA, Stocchi F. Drug insight: continuous dopaminergic stimulation in the treatment of Parkinson's disease. Nat Clin Pract Neurol. 2006;2(7):382–92. https://doi.org/10.1038/ncpneuro0222.

    Article  CAS  PubMed  Google Scholar 

  35. Stoker TB, Blair NF, Barker RA. Neural grafting for Parkinson's disease: challenges and prospects. Neural Regen Res. 2017;12(3):389–92. https://doi.org/10.4103/1673-5374.202935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chaudhuri KR, Odin P, Antonini A, Martinez-Martin P. Parkinson's disease: the non-motor issues. Parkinsonism Relat Disord. 2011;17(10):717–23. https://doi.org/10.1016/j.parkreldis.2011.02.018.

    Article  PubMed  Google Scholar 

  37. Lipp MM, Batycky R, Moore J, Leinonen M, Freed MI. Preclinical and clinical assessment of inhaled levodopa for OFF episodes in Parkinson's disease. Sci Transl Med. 2016;8(360):360ra136. https://doi.org/10.1126/scitranslmed.aad8858.

    Article  CAS  PubMed  Google Scholar 

  38. Paik J. Levodopa inhalation powder: a review in Parkinson's disease. Drugs. 2020;80(8):821–8. https://doi.org/10.1007/s40265-020-01307-x.

    Article  CAS  PubMed  Google Scholar 

  39. LeWitt PA, Hauser RA, Pahwa R, Isaacson SH, Fernandez HH, Lew M, et al. Safety and efficacy of CVT-301 (levodopa inhalation powder) on motor function during off periods in patients with Parkinson's disease: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Neurol. 2019;18(2):145–54. https://doi.org/10.1016/s1474-4422(18)30405-8.

    Article  CAS  PubMed  Google Scholar 

  40. Grosset DG, Dhall R, Gurevich T, Kassubek J, Poewe WH, Rascol O, et al. Inhaled levodopa in Parkinson's disease patients with OFF periods: a randomized 12-month pulmonary safety study. Parkinsonism Relat Disord. 2020;71:4–10. https://doi.org/10.1016/j.parkreldis.2019.12.012.

    Article  PubMed  Google Scholar 

  41. Abercrombie ED, Bonatz AE, Zigmond MJ. Effects of l-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res. 1990;525(1):36–44. https://doi.org/10.1016/0006-8993(90)91318-B.

    Article  CAS  PubMed  Google Scholar 

  42. Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 1991;41(1):1–24. https://doi.org/10.1016/0306-4522(91)90196-U.

    Article  CAS  PubMed  Google Scholar 

  43. Venton BJ, Zhang H, Garris PA, Phillips PEM, Sulzer D, Wightman RM. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem. 2003;87(5):1284–95. https://doi.org/10.1046/j.1471-4159.2003.02109.x.

    Article  CAS  PubMed  Google Scholar 

  44. Obeso JA, Olanow CW, Nutt JG. Levodopa motor complications in Parkinson's disease. Trends Neurosci. 2000;23(10 Suppl.):5. https://doi.org/10.1016/S1471-1931(00)00031-8.

    Article  Google Scholar 

  45. Obeso JA, Grandas F, Herrero MT, Horowski R. The role of pulsatile versus continuous dopamine receptor stimulation for functional recovery in Parkinson's disease. Eur J Neurosci. 1993;1994(6):889–97.

    Article  Google Scholar 

  46. Olanow CW, Calabresi P, Obeso JA. Continuous dopaminergic stimulation as a treatment for Parkinson's disease: current status and future opportunities. Move Disord. 2020. https://doi.org/10.1002/mds.28215.

    Article  Google Scholar 

  47. Calabresi P, Galletti F, Saggese E, Ghiglieri V, Picconi B. Neuronal networks and synaptic plasticity in Parkinson's disease: beyond motor deficits. Parkinsonism Relat Disord. 2007;13:S259–S262262. https://doi.org/10.1016/S1353-8020(08)70013-0.

    Article  PubMed  Google Scholar 

  48. Jenner P. Wearing off, dyskinesia, and the use of continuous drug delivery in Parkinson's disease. Neurol Clin. 2013. https://doi.org/10.1016/j.ncl.2013.04.010.

    Article  PubMed  Google Scholar 

  49. Nutt JG. Continuous dopaminergic stimulation: is it the answer to the motor complications of levodopa? Move Disord. 2007;22(1):1–9. https://doi.org/10.1002/mds.21060.

    Article  Google Scholar 

  50. Wamelen DJV, Grigoriou S, Chaudhuri KR, Odin P. Continuous drug delivery aiming continuous dopaminergic stimulation in Parkinson’s disease. J Parkinson’s Dis. 2018. https://doi.org/10.3233/JPD-181476.

    Article  Google Scholar 

  51. Bibbiani F, Costantini LC, Patel R, Chase TN. Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol. 2005;192(1):73–8. https://doi.org/10.1016/j.expneurol.2004.11.013.

    Article  CAS  PubMed  Google Scholar 

  52. Blanchet PJ, Gomez-Mancilla B, Di Paolo T, Bédard PJ. Is striatal dopaminergic receptor imbalance responsible for levodopa-induced dyskinesia? Fundam Clin Pharmacol. 1995;9(5):434–42. https://doi.org/10.1111/j.1472-8206.1995.tb00518.x.

    Article  CAS  PubMed  Google Scholar 

  53. Stibe CMH, Kempster PA, Lees AJ, Stern GM. Subcutaneous apomorphine in Parkinsonian on-off oscillations. Lancet. 1988;331(8582):403–6. https://doi.org/10.1016/S0140-6736(88)91193-2.

    Article  Google Scholar 

  54. Vaamonde J, Luquin MR, Obeso JA. Subcutaneous lisuride infusion in Parkinson's disease: response to chronic administration in 34 patients. Brain. 1991;114(1):601–14. https://doi.org/10.1093/brain/114.1.601.

    Article  PubMed  Google Scholar 

  55. Müller T, Möhr JD. Efficacy of carbidopa–levodopa extended-release capsules (IPX066) in the treatment of Parkinson disease. Expert Opin Pharmacother. 2018;19(18):2063–71. https://doi.org/10.1080/14656566.2018.1538355.

    Article  CAS  PubMed  Google Scholar 

  56. Hauser RA, Ellenbogen AL, Metman LV, Hsu A, O'Connell MJ, Modi NB, et al. Crossover comparison of IPX066 and a standard levodopa formulation in advanced Parkinson's disease. Mov Disord. 2011;26(12):2246–52. https://doi.org/10.1002/mds.23861.

    Article  PubMed  Google Scholar 

  57. Pahwa R, Lyons KE, Hauser RA, Fahn S, Jankovic J, Pourcher E, et al. Randomized trial of IPX066, carbidopa/levodopa extended release, in early Parkinson's disease. Parkinsonism Relat Disord. 2014;20(2):142–8. https://doi.org/10.1016/j.parkreldis.2013.08.017.

    Article  PubMed  Google Scholar 

  58. Hauser RA, Hsu A, Kell S, Espay AJ, Sethi K, Stacy M, et al. Extended-release carbidopa–levodopa (IPX066) compared with immediate-release carbidopa–levodopa in patients with Parkinson's disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol. 2013;12(4):346–56. https://doi.org/10.1016/s1474-4422(13)70025-5.

    Article  CAS  PubMed  Google Scholar 

  59. Stocchi F, Hsu A, Khanna S, Ellenbogen A, Mahler A, Liang G, et al. Comparison of IPX066 with carbidopa–levodopa plus entacapone in advanced PD patients. Parkinsonism Relat Disord. 2014;20(12):1335–400. https://doi.org/10.1016/j.parkreldis.2014.08.004.

    Article  PubMed  Google Scholar 

  60. Verhagen Metman L, Stover N, Chen C, Cowles VE, Sweeney M. Gastroretentive carbidopa/levodopa, DM-1992, for the treatment of advanced Parkinson's disease. Move Disord. 2015;30(9):1222–8. https://doi.org/10.1002/mds.26219.

    Article  CAS  Google Scholar 

  61. Chen C, Cowles VE, Sweeney M, Stolyarov ID, Illarioshkin SN. Pharmacokinetics and pharmacodynamics of gastroretentive delivery of levodopa/carbidopa in patients with Parkinson disease. Clin Neuropharmacol. 2012;35(2):67–72. https://doi.org/10.1097/WNF.0b013e31824523de.

    Article  CAS  PubMed  Google Scholar 

  62. LeWitt PA, Giladi N, Navon N. Pharmacokinetics and efficacy of a novel formulation of carbidopa–levodopa (Accordion Pill®) in Parkinson's disease. Parkinsonism Relat Disord. 2019;65(May):131–8. https://doi.org/10.1016/j.parkreldis.2019.05.032.

    Article  PubMed  Google Scholar 

  63. Navon N. The Accordion Pill®: unique oral delivery to enhance pharmacokinetics and therapeutic benefit of challenging drugs. Ther Deliv. 2019;10(7):433–42. https://doi.org/10.4155/tde-2018-0067.

    Article  CAS  PubMed  Google Scholar 

  64. Lewitt PA, Ellenbogen A, Chen D, Lal R, McGuire K, Zomorodi K, et al. Actively transported levodopa Prodrug XP21279: a study in patients with Parkinson disease who experience motor fluctuations. Clin Neuropharmacol. 2012;35(3):103–10. https://doi.org/10.1097/WNF.0b013e31824e4d7d.

    Article  CAS  PubMed  Google Scholar 

  65. Lewitt PA, Huff FJ, Hauser RA, Chen D, Lissin D, Zomorodi K, et al. Double-blind study of the actively transported levodopa prodrug XP21279 in Parkinson's disease. Move Disord. 2014;29(1):75–82. https://doi.org/10.1002/mds.25742.

    Article  CAS  Google Scholar 

  66. Trenkwalder C, Kuoppamaki M, Vahteristo M, Muller T, Ellmen J. Increased dose of carbidopa with levodopa and entacapone improves "off" time in a randomized trial. Neurology. 2019;92(13):e1487–e14961496. https://doi.org/10.1212/wnl.0000000000007173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bredenberg S, Nyholm D, Aquilonius SM, Nyström C. An automatic dose dispenser for microtablets: a new concept for individual dosage of drugs in tablet form. Int J Pharm. 2003;261(1–2):137–46. https://doi.org/10.1016/S0378-5173(03)00294-1.

    Article  CAS  PubMed  Google Scholar 

  68. Nyholm D, Ehrnebo M, Lewander T, Trolin CG, Bäckström T, Panagiotidis G, et al. Frequent administration of levodopa/carbidopa microtablets vs levodopa/carbidopa/entacapone in healthy volunteers. Acta Neurol Scand. 2013;127(2):124–32. https://doi.org/10.1111/j.1600-0404.2012.01700.x.

    Article  CAS  PubMed  Google Scholar 

  69. Warren Olanow C, Torti M, Kieburtz K, Leinonen M, Vacca L, Grassini P, et al. Continuous versus intermittent oral administration of levodopa in Parkinson's disease patients with motor fluctuations: a pharmacokinetics, safety, and efficacy study. Move Disord. 2019;34(3):425–9. https://doi.org/10.1002/mds.27610.

    Article  CAS  Google Scholar 

  70. Aquilonius SM, Nyholm D. Development of new levodopa treatment strategies in Parkinson’s disease: from bedside to bench to bedside. Upsala J Med Sci. 2017;122(2):71–7. https://doi.org/10.1080/03009734.2017.1285374.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nyholm D, Odin P, Johansson A, Chatamra K, Locke C, Dutta S, et al. Pharmacokinetics of levodopa, carbidopa, and 3-O-methyldopa following 16-h jejunal infusion of levodopa–carbidopa intestinal gel in advanced Parkinson's disease patients. AAPS J. 2013;15(2):316–23. https://doi.org/10.1208/s12248-012-9439-1.

    Article  CAS  PubMed  Google Scholar 

  72. Fernandez HH, Boyd JT, Fung VSC, Lew MF, Rodriguez RL, Slevin JT, et al. Long-term safety and efficacy of levodopa–carbidopa intestinal gel in advanced Parkinson's disease. Move Disord. 2018;33(6):928–36. https://doi.org/10.1002/mds.27338.

    Article  CAS  Google Scholar 

  73. Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, et al. Continuous intrajejunal infusion of levodopa–carbidopa intestinal gel for patients with advanced Parkinson's disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13(2):141–9. https://doi.org/10.1016/S1474-4422(13)70293-X.

    Article  CAS  PubMed  Google Scholar 

  74. Honig H, Antonini A, Martinez-Martin P, Forgacs I, Faye GC, Fox T, et al. Intrajejunal levodopa infusion in Parkinson's disease: a pilot multicenter study of effects on nonmotor symptoms and quality of life. Move Disord. 2009;24(10):1468–74. https://doi.org/10.1002/mds.22596.

    Article  Google Scholar 

  75. Wirdefeldt K, Odin P, Nyholm D. Levodopa–carbidopa intestinal gel in patients with Parkinson's disease: a systematic review. CNS Drugs. 2016;30(5):381–404. https://doi.org/10.1007/s40263-016-0336-5.

    Article  CAS  PubMed  Google Scholar 

  76. Muller T, van Laar T, Cornblath DR, Odin P, Klostermann F, Grandas FJ, et al. Peripheral neuropathy in Parkinson's disease: levodopa exposure and implications for duodenal delivery. Parkinsonism Relat Disord. 2013;19(5):501–7. https://doi.org/10.1016/j.parkreldis.2013.02.006.

    Article  PubMed  Google Scholar 

  77. Muller T, Jugel C, Ehret R, Ebersbach G, Bengel G, Muhlack S, et al. Elevation of total homocysteine levels in patients with Parkinson's disease treated with duodenal levodopa/carbidopa gel. J Neural Transm (Vienna). 2011;118(9):1329–33. https://doi.org/10.1007/s00702-011-0614-9.

    Article  CAS  Google Scholar 

  78. Senek M, Nyholm D. Continuous drug delivery in Parkinson's disease. CNS Drugs. 2014;28(1):19–27. https://doi.org/10.1007/s40263-013-0127-1.

    Article  CAS  PubMed  Google Scholar 

  79. Senek M, Nielsen EI, Nyholm D. Levodopa–entacapone–carbidopa intestinal gel in Parkinson's disease: a randomized crossover study. Mov Disord. 2017;32(2):283–6. https://doi.org/10.1002/mds.26855.

    Article  CAS  PubMed  Google Scholar 

  80. Rosebraugh M, Kym P, Liu W, Facheris M, Benesh J. A novel levodopa/carbidopa prodrug (ABBV-951) 24-h continuous subcutaneous infusion treatment for Parkinson’s disease (P3.8–037). Neurology. 2019;92(15 Suppl):P3.8037.

    Google Scholar 

  81. Facheris M, Qi X, Locke C, Rosebraugh M, Benesh J. Lack of notable skin reactions from a novel levodopa/carbidopa prodrug after 10 days of repeated 24-hour continuous subcutaneous infusion at the same administration site [abstract]. Mov Disord. 2019;34(suppl 2). https://www.mdsabstracts.org/abstract/lack-of-notable-skin-reactions-from-a-novel-levodopa-carbidopa-prodrug-after-10-days-of-repeated-24-hour-continuous-subcutaneous-infusion-at-the-same-administration-site/. Accessed 14 Oct 2020.

  82. Giladi N, Caraco Y, Gureritch T, Djaldetti R, Cohen Y, Yacobi-Zeevi O, et al. Pharmacokinetics and safety of ND0612L (levodopa/carbidopa for subcutaneous infusion): results from a phase II study in moderate to severe Parkinson’s disease (P1.187). Neurology. 2015;84(14 Suppl):P1.187.

    Google Scholar 

  83. Adar L, Rachmilewitz Minei T, Cohen Y, Oren S. Pharmacokinetic profile of continuous levodopa/carbidopa delivery when administered subcutaneously (ND0612) versus duodenal infusion (levodopa/carbidopa intestinal gel) [abstract]. Move Disord. 2017;32(suppl 2). https://www.mdsabstracts.org/abstract/pharmacokinetic-profile-of-continuous-levodopacarbidopa-delivery-when-administered-subcutaneously-nd0612-versus-duodenal-infusion-levodopacarbidopa-intestinal-gel/. Accessed 14 Oct 2020.

  84. Kieburtz K, Katz R, Olanow CW. New drugs for Parkinson's disease: the regulatory and clinical development pathways in the United States. Mov Disord. 2018;33(6):920–7. https://doi.org/10.1002/mds.27220.

    Article  PubMed  Google Scholar 

  85. Atlas D. DopAmide: novel, water-soluble, Slow-release l-dihydroxyphenylalanine (l-DOPA) precursor moderates l-DOPA conversion to dopamine and generates a sustained level of dopamine at dopaminergic neurons. CNS Neurosci Ther. 2016;22(6):461–7. https://doi.org/10.1111/cns.12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cacciatore I, Ciulla M, Marinelli L, Eusepi P, Di Stefano A. Advances in prodrug design for Parkinson’s disease. Expert Opin Drug Discov. 2018;13(4):295–305. https://doi.org/10.1080/17460441.2018.1429400.

    Article  CAS  PubMed  Google Scholar 

  87. Laloux C, Gouel F, Lachaud C, Timmerman K, Van Do B, Jonneaux A, et al. Continuous cerebroventricular administration of dopamine: a new treatment for severe dyskinesia in Parkinson's disease? Neurobiol Dis. 2017;103:24–31. https://doi.org/10.1016/j.nbd.2017.03.013.

    Article  CAS  PubMed  Google Scholar 

  88. Kupsch A, Oertel WH, Earl CD, Sautter J. Neuronal transplantation and neurotrophic factors in the treatment of Parkinson's disease: update February 1995. J Neural Transm Suppl. 1995;46:193–207.

    CAS  PubMed  Google Scholar 

  89. Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the treatment of Parkinson’s disease: beyond dopamine. Front Aging Neurosci. 2020;12:4. https://doi.org/10.3389/fnagi.2020.00004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hagell P, Piccini P, Björklund A, Brundin P, Rehncrona S, Widner H, et al. Dyskinesias following neural transplantation in Parkinson's disease. Nat Neurosci. 2002;5(7):627–8. https://doi.org/10.1038/nn863.

    Article  CAS  PubMed  Google Scholar 

  91. Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature. 2017;548(7669):592–6. https://doi.org/10.1038/nature23664.

    Article  CAS  PubMed  Google Scholar 

  92. Lundberg C, Bjorklund T, Carlsson T, Jakobsson J, Hantraye P, Deglon N, et al. Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr Gene Ther. 2008;8(6):461–73. https://doi.org/10.2174/156652308786847996.

    Article  CAS  PubMed  Google Scholar 

  93. Penaud-Budloo M, Le Guiner C, Nowrouzi A, Toromanoff A, Cherel Y, Chenuaud P, et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol. 2008;82(16):7875–85. https://doi.org/10.1128/jvi.00649-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. Biodrugs. 2017;31(4):317–34. https://doi.org/10.1007/s40259-017-0234-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Christine CW, Bankiewicz KS, Van Laar AD, Richardson RM, Ravina B, Kells AP, et al. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson's disease. Ann Neurol. 2019;85(5):704–14. https://doi.org/10.1002/ana.25450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nutt JG, Curtze C, Hiller A, Anderson S, Larson PS, Laar ADV, et al. Aromatic l-amino acid decarboxylase gene therapy enhances levodopa response in Parkinson’s disease. Mov Disord. 2020;35(5):851–8. https://doi.org/10.1002/mds.27993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Foffani G, Trigo-Damas I, Pineda-Pardo JA, Blesa J, Rodríguez-Rojas R, Martínez-Fernández R, et al. Focused ultrasound in Parkinson's disease: a twofold path toward disease modification. Move Disord. 2019;34(9):1262–73. https://doi.org/10.1002/mds.27805.

    Article  Google Scholar 

  98. Müller T. Pharmacokinetics and pharmacodynamics of levodopa/carbidopa cotherapies for Parkinson's disease. Expert Opin Drug Metab Toxicol. 2020;16(5):403–14. https://doi.org/10.1080/17425255.2020.1750596.

    Article  CAS  PubMed  Google Scholar 

  99. Meloni M, Solla P, Mascia MM, Marrosu F, Cannas A. Diphasic dyskinesias during levodopa–carbidopa intestinal gel (LCIG) infusion in Parkinson's disease. Parkinsonism Relat Disord. 2017;37:92–6. https://doi.org/10.1016/j.parkreldis.2016.12.030.

    Article  PubMed  Google Scholar 

  100. Klostermann F, Jugel C, Bömelburg M, Marzinzik F, Ebersbach G, Müller T. Severe gastrointestinal complications in patients with levodopa/carbidopa intestinal gel infusion. Mov Disord. 2012;27(13):1704–5. https://doi.org/10.1002/mds.25238.

    Article  PubMed  Google Scholar 

  101. Grosset D, Antonini A, Canesi M, Pezzoli G, Lees A, Shaw K, et al. Adherence to antiparkinson medication in a multicenter European study. Mov Disord. 2009;24(6):826–32. https://doi.org/10.1002/mds.22112.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Pierpaolo Urso for graphical assistance with the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Urso.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Daniele Urso, K. Ray Chaudhuri, Mubasher A. Qamar and Peter Jenner have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

DU, KRC and PJ conceptualised the paper and drafted and revised the manuscript. MAQ drafted and revised the manuscript. All authors approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urso, D., Chaudhuri, K.R., Qamar, M.A. et al. Improving the Delivery of Levodopa in Parkinson’s Disease: A Review of Approved and Emerging Therapies. CNS Drugs 34, 1149–1163 (2020). https://doi.org/10.1007/s40263-020-00769-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-020-00769-7

Navigation