Skip to main content
Log in

Characterizing geometrically necessary dislocations using an elastic–plastic decomposition of Laplace stretch

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, the geometric dislocation density tensor and Burgers vector are studied using an elastic–plastic decomposition of Laplace stretch \(\varvec{\mathcal {U}}\). The Laplace stretch arises from a \(\mathbf {QR}\) decomposition of the deformation gradient and is very useful, as one can directly and unambiguously measure its components by performing experiments. The geometric dislocation density tensor \({\tilde{\mathbf {G}}}\) is obtained using the classical argument of failure of a Burgers circuit in a suitable configuration \(\tilde{\kappa }_p\) where the deformation of a body is solely due to the movement of dislocations. The geometric features of space \(\tilde{\kappa }_p\) are explored. It is shown that the derived geometric dislocation tensor is related to the torsion of \(\tilde{\kappa }_p\), which serves as a measure of incompatibility in this space. Additionally, \({\tilde{\mathbf {G}}}\) vanishes only when the space \(\tilde{\kappa }_p\) is compatible. A balance law for geometric dislocations is derived taking into account the effect of the dislocation flux and source dislocations. The physical meaning of the plastic Laplace stretch, and consequently, of the derived geometric dislocation tensor proves to be particularly useful in the classification of dislocations. Finally, the significance of the dislocation density tensor is discussed. The derived geometric dislocation density tensor could be specifically useful in developing a strain-gradient and size-dependent theory of plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Originally proposed by Bilby et al. [5].

  2. Note that \(\varvec{\mathcal {R}}\) is different from the rotation tensor \(\mathbf {R}\) obtained from polar decomposition of \(\mathbf {F}\).

  3. This measure for GND density is same as the one derived in Cermelli and Gurtin [9].

  4. The Gram-Schmidt procedure does not specify the 1 coordinate direction nor the 12 coordinate plane, based upon which the other coordinate directions are determined. Therefore, one can potentially have a non-unique set of bases for an experimenter’s frame of reference. This issue is resolved by re-indexing the deformation gradient using a strategy whereby the selected 1 direction undergoes the least amount of transverse shear, and the selected 12 coordinate plane experiences least amount of in-plane shear. This re-indexed deformation gradient is denoted by \(\varvec{\mathcal {F}}\), whose construction is developed in a paper soon to be published. In fact, the re-indexed deformation gradient \(\varvec{\mathcal {F}}\) is decomposed into \(\varvec{\mathcal {R}}\) and \(\varvec{\mathcal {U}}\). This is merely a problem of selecting the ‘correct’ set of bases. Deformation gradients \(\mathbf {F}\) and \(\varvec{\mathcal {F}}\) essentially contain the same information.

  5. Although it is indeed possible for bodies made up of a rigid plastic material to undergo a plastic only deformation, such a constitutive relation is too restrictive.

  6. Such cases appear whenever the deformation gradient is upper-triangular, e.g., a uniaxial or a biaxial tension.

  7. Note that in this case, elongation along the 1 direction is \(a=1\).

References

  1. Acharya, A.: A counterpoint to Cermelli and Gurtin’s criteria for choosing the ‘correct’ geometric dislocation tensor in finite plasticity. In: IUTAM Symposium on theoretical, computational and modelling aspects of inelastic media, pp. 99–105. Springer (2008)

  2. Acharya, A., Bassani, J.L.: Lattice incompatibility and a gradient theory of crystal plasticity. J. Mech. Phys. Solids 48(8), 1565–1595 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Barber, J.R.: Elasticity. Springer, Berlin (1992)

    MATH  Google Scholar 

  4. Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 231(1185), 263–273 (1955)

    MathSciNet  Google Scholar 

  5. Bilby, B. A., Gardner, L. R. T., Stroh, A. N.: Continuous distributions of dislocations and the theory of plasticity. In: Proceedings of the 9th international congress of applied mechanics, volume 8, pp. 35–44. University de Bruxelles, Brussels (1957)

  6. Bullough, R., Bilby, B.A.: Continuous distributions of dislocations: surface dislocations and the crystallography of martensitic transformations. Proc. Phys. Soc. Sect. B 69(12), 1276 (1956)

    MATH  Google Scholar 

  7. Burgers, J. M.: Physics.–Some considerations on the fields of stress connected with dislocations in a regular crystal lattice. I. In: Selected Papers of JM Burgers, pp. 335–389. Springer, Berlin (1995)

  8. Casey, J., Naghdi, P.M.: A remark on the use of the decomposition \(\mathbf{F}=\mathbf{F}^e\mathbf{F}^p\) in plasticity. J. Appl. Mech. 47(3), 672–675 (1980)

    MATH  Google Scholar 

  9. Cermelli, P., Gurtin, M.E.: On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49(7), 1539–1568 (2001)

    MATH  Google Scholar 

  10. Acharya, A. A counterpoint to Cermelli and Gurtin’s criteria or choosing the ‘correct’ geometric dislocation tensor in finite plasticity. In: IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, pp. 99–105 (2008)

  11. Clayton, J.D.: On anholonomic deformation, geometry, and differentiation. Math. Mech. Solids 17(7), 702–735 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Clayton, J.D.: Differential Geometry and Kinematics of Continua. World Scientific, Singapore (2015)

    MATH  Google Scholar 

  13. Dafalias, Y.F.: Plastic spin: necessity or redundancy? Int. J. Plast 14(9), 909–931 (1998)

    MATH  Google Scholar 

  14. Davini, C., Parry, G.P.: On defect-preserving deformations in crystals. Int. J. Plast 5(4), 337–369 (1989)

    MATH  Google Scholar 

  15. Davini, C., Parry, G.P.: A complete list of invariants for defective crystals. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 432(1886), 341–365 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Google Scholar 

  17. Freed, A.D., le Graverend, J.B., Rajagopal, K.R.: (2019): A decomposition of Laplace stretch with applications in inelasticity. Acta Mech. 230(9), 3423–3429 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Freed, A.D., Srinivasa, A.R.: Logarithmic strain and its material derivative for a QR decomposition of the deformation gradient. Acta Mech. 226(8), 2645–2670 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Freed, A.D., Zamani, S.: On the use of convected coordinate systems in the mechanics of continuous media derived from a QR factorization of F. Int. J. Eng. Sci. 127, 145–161 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity-I. Theory. J. Mech. Phys. Solids 47(6), 1239–1263 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Ghosh, P., Srinivasa, A.R.: Development of a finite strain two-network model for shape memory polymers using QR decomposition. Int. J. Eng. Sci. 81, 177–191 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Green, A.E., Naghdi, P.M.: Some remarks on elastic-plastic deformation at finite strain. Int. J. Eng. Sci. 9(12), 1219–1229 (1971)

    MATH  Google Scholar 

  23. Gupta, A., Steigmann, D.J., Stölken, J.S.: On the evolution of plasticity and incompatibility. Math. Mech. Solids 12(6), 583–610 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Gurtin, M.E.: The Burgers vector and the flow of screw and edge dislocations in finite-deformation single-crystal plasticity. J. Mech. Phys. Solids 54(9), 1882–1898 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Iwasawa, K.: On some types of topological groups. Ann. Math. pp. 507–558 (1949)

  26. Jiang, J., Zhang, T., Dunne, F.P., Britton, T.B.: Deformation compatibility in a single crystalline Ni superalloy. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2185), 20150690 (2016)

    Google Scholar 

  27. Kondo, K.: Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. Mem. Unif. Stud. Basic Probl. Eng. Sci. Means Geom. 1, 6–17 (1955)

    Google Scholar 

  28. Kröner, E.: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Ration. Mech. Anal. 4(1), 273 (1959)

    MathSciNet  MATH  Google Scholar 

  29. Fox, N.: A continuum theory of dislocations for single crystals. IMA J. Appl. Math. 2(4), 285–298 (1966)

    Google Scholar 

  30. Eshelby, J.D.: The continuum theory of lattice defects. Solid State Phys. 3, 79–144 (1956)

    Google Scholar 

  31. Kuroda, M., Tvergaard, V.: A finite deformation theory of higher-order gradient crystal plasticity. J. Mech. Phys. Solids 56(8), 2573–2584 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Le, K.C., Stumpf, H.: On the determination of the crystal reference in nonlinear continuum theory of dislocations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 452(1945), 359–371 (1996)

    MATH  Google Scholar 

  33. Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36(1), 1–6 (1969)

    MATH  Google Scholar 

  34. Lembo, M.: On the determination of deformation from strain. Meccanica 52(9), 2111–2125 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Leon, S.J., Björck, Å., Gander, W.: Gram-Schmidt orthogonalization: 100 years and more. Numer. Linear Algebra Appl. 20(3), 492–532 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Lubarda, V.A.: Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev. 57(2), 95–108 (2004)

    Google Scholar 

  37. McLellan, A.G.: Finite strain coordinates and the stability of solid phases. J. Phys. C: Solid State Phys. 9(22), 4083 (1976)

    Google Scholar 

  38. McLellan, A.G.: The classical thermodynamics of deformable materials. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  39. Naghdi, P.M.: A critical review of the state of finite plasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP 41(3), 315–394 (1990)

    MathSciNet  MATH  Google Scholar 

  40. Naghdi, P.M., Srinivasa, A.R.: Characterization of dislocations and their influence on plastic deformation in single crystals. Int. J. Eng. Sci. 32(7), 1157–1182 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    MATH  Google Scholar 

  42. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)

    Google Scholar 

  43. Paul, S., Freed, A.D.: A simple representation of compatibility condition for finite deformation using a Gram-Schmidt factorization of the deformation gradient. Acta Mech. 231, 3289–3304 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)

    Google Scholar 

  45. Schubert, H.: Memoirs of the unifying study of the basic problems in engineering sciences by means of geometry, volume I, by a study group of sixteen members. chairman Dr. Ing. Kazuo Kondo Prof. ad Univ. Tokio). XV+ 690 S. m. zahlr. Abb. Tokio 1955. Gakujutsu Bunken Fukyu-kai. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 37(5-6):237–237 (1957)

  46. Simo, J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part i. Continuum formulation. Comput. Methods Appl. Mech. Eng. 66(2), 199–219 (1988)

    MATH  Google Scholar 

  47. Srinivasa, A.R.: On the use of the upper triangular (or QR) decomposition for developing constitutive equations for Green-elastic materials. Int. J. Eng. Sci. 60, 1–12 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Vujosevic, L., Lubarda, V.: Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient. Theoret. Appl. Mech. 28(29), 379–399 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Yavari, A., Goriely, A.: Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205(1), 59–118 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Freed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Freed, A.D. Characterizing geometrically necessary dislocations using an elastic–plastic decomposition of Laplace stretch. Z. Angew. Math. Phys. 71, 196 (2020). https://doi.org/10.1007/s00033-020-01420-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01420-7

Keywords

Mathematics Subject Classification

Navigation