Skip to main content

Advertisement

Log in

A prediction method of mechanical product assembly precision based on the fusion of measured samples and assembly feature fidelity samples

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Customized mechanical products based on orders have characteristics such as small batch sizes and multi-variety in production, which results in less availability of sample data related to assembly. Therefore, a problem of prediction of assembly precision exists due to the small number of samples. This paper studies the prediction method of mechanical product assembly precision based on the fusion of measured samples and feature fidelity samples. First, an assembly-feature fidelity sample (AFFS) generation method based on measured data is proposed, which expands the amount of mechanical product assembly feature samples through the meta-model concept. Then, a fusion method of measured samples and AFFS of mechanical products based on a double-layer learning network is proposed, which improves the under-fitting of a few samples and enhances the generalization ability of the model. Finally, case studies of gear-shaft assembly structure that are common in mechanical products, such as engines, gearboxes, and traction machines, were examined to verify the method we proposed and compare them with a tolerance analysis method and a machine learning method. The average errors of the assembly precision predicted by the method in this paper are 1.2% and 5.0%, respectively, which are better than the outcomes of SVR and NNs. The average errors of SVR and NNs are 3.2% and 2.8% in case 1 and 19% and 17% in case 2, respectively. The results show that the method in this paper has advantages of smaller error fluctuations and the best accuracy stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Farahati R, Lin Y (2003) CAD–based virtual assembly prototyping–a case study. Int J Adv Manuf Technol 21(4):263–274. https://doi.org/10.1007/s001700300031

    Article  Google Scholar 

  2. Deviprasad T, Kesavadas T (2003) Virtual prototyping of assembly components using process modeling. J Manuf Syst 22(1):16–27. https://doi.org/10.1016/S0278-6125(03)90002-1

    Article  Google Scholar 

  3. Shen Q, Gausemeier J, Bauch J, Radkowski R (2005) A cooperative virtual prototyping system for mechatronic solution elements based assembly. Adv Eng Inform 19(2):169–177. https://doi.org/10.1016/j.aei.2005.05.011

    Article  Google Scholar 

  4. Jayaram S, Connacher HI, Lyons KW (1997) Virtual assembly using virtual reality techniques. Comput Aid Des 29(8):575–584. https://doi.org/10.1016/S0010-4485(96)00094-2

    Article  Google Scholar 

  5. Coutee AS, McDermott SD, Bras B (2001) A haptic assembly and disassembly simulation environment and associated computational load optimization techniques. J Comput Inf Sci Eng 1(2):113–122. https://doi.org/10.1115/1.1389085

    Article  Google Scholar 

  6. Wang C, Mitrouchev P, Li G, Lu L (2014) 3D geometric removability analysis for virtual disassembly evaluation. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp 1212–1217 https://doi.org/10.1109/AIM.2014.6878247

  7. Cao Y, Liu T, Yang J (2018) A comprehensive review of tolerance analysis models. Int J Adv Manuf Technol 97(5):3055–3085. https://doi.org/10.1007/s00170-018-1920-2

    Article  Google Scholar 

  8. Chen H, Jin S, Li Z, Lai X (2014) A comprehensive study of three dimensional tolerance analysis methods. Comput Aid Des 53:1–13. https://doi.org/10.1016/j.cad.2014.02.014

    Article  Google Scholar 

  9. Desrochers A, Ghie W, Laperrière L (2003) Application of a unified Jacobian–Torsor model for tolerance analysis. J Comput Inf Sci Eng 3(1):2–14. https://doi.org/10.1115/11573235

    Article  Google Scholar 

  10. Chen H, Jin S, Li Z, Lai X (2015 ) A solution of partial parallel connections for the unified Jacobian–Torsor model. Mech Mach Theor 91:39–49. https://doi.org/10.1016/j.mechmachtheory.2015.03.012

    Article  Google Scholar 

  11. Zeng W, Rao Y, Wang P, Yi W (2017) A solution of worst-case tolerance analysis for partial parallel chains based on the unified Jacobian–Torsor model. Precis Eng 47:276–291. https://doi.org/10.1016/j.precisioneng.2016.09.002

    Article  Google Scholar 

  12. Jin S, Ding S, Li Z, Yang F, Ma X (2018) Point-based solution using Jacobian–Torsor theory into partial parallel chains for revolving components assembly. J Manuf Syst 46:46–58. https://doi.org/10.1016/j.jmsy.2017.11.003

    Article  Google Scholar 

  13. Zuo X, Li B, Yang J, Jiang X (2013) Application of the Jacobian–Torsor theory into error propagation analysis for machining processes. Int J Adv Manuf Technol 69(5):1557–1568. https://doi.org/10.1007/s00170-013-5088-5

    Article  Google Scholar 

  14. Shen W, Pang K, Liu C, Ge M, Zhang Y, Wang X (2015) The quality control method for remanufacturing assembly based on the Jacobian–Torsor model. Int J Adv Manuf Technol 81(1):253–261. 10.1007/s00170-015-7194-z

    Article  Google Scholar 

  15. Guo J, Liu Z, Li B, Hong J (2015) Optimal tolerance allocation for precision machine tools in consideration of measurement and adjustment processes in assembly. Int J Adv Manuf Technol 80:1625–1640. https://doi.org/10.1007/s00170-015-7122-2

    Article  Google Scholar 

  16. Mao J, Chen D, Zhang L (2016) Mechanical assembly quality prediction method based on state space model. Int J Adv Manuf Technol 86:107–116. https://doi.org/10.1007/s00170-015-8122-y

    Article  Google Scholar 

  17. Peng H, Wang B (2018) A statistical approach for three-dimensional tolerance redesign of mechanical assemblies. Proc Inst Mech Eng C–J Mech E 232(12):2132–2144. https://doi.org/10.1177/0954406217716956

    Article  Google Scholar 

  18. Du ZC, Wu J, Yang JG (2017) Geometric error modeling and sensitivity analysis of single-axis assembly in three–axis vertical machine center based on Jacobian–Torsor model. ASME. J. Risk Uncertainty Part B 4(3):031004. https://doi.org/10.1115/1.4038170

    Google Scholar 

  19. Ni WH, Yao ZQ (2013) Integrating cylindricity error into tolerance analysis of precision rotary assemblies using Jacobian–Torsor model. Proc Inst Mech Eng C-J Mech E 227(11):2517–2530. https://doi.org/10.1177/0954406213475553

    Article  Google Scholar 

  20. Guo C, Liu J, Ke J (2016) Efficient statistical analysis of geometric tolerances using unified error distribution and an analytical variation model. Int J Adv Manuf Technol 84:347–360. https://doi.org/10.1007/s00170-015-7577-1

    Article  Google Scholar 

  21. Zeng W, Rao Y, Wang P (2017) An effective strategy for improving the precision and computational efficiency of statistical tolerance optimization. Int J Adv Manuf Technol 92:1933–1944. https://doi.org/10.1007/s00170-017-0256-7

    Article  Google Scholar 

  22. Liu G, Hong J, Wu W, Sun Y (2018) Investigation on the influence of interference fit on the static and dynamic characteristics of spindle system. Int J Adv Manuf Technol 99(5):1953–1966. https://doi.org/10.1007/s00170-018-2567-8

    Article  Google Scholar 

  23. He G, Guo L, Li S, Zhang D (2017) Simulation and analysis for accuracy predication and adjustment for machine tool assembly process. Adv Mech Eng 9(11):1687814017734475. https://doi.org/10.1177/1687814017734475

    Article  Google Scholar 

  24. Ni J, Tang W, Xing Y (2014) Three-dimensional precision analysis with rigid and compliant motions for sheet metal assembly. Int J Adv Manuf Technol 73:805–819. https://doi.org/10.1007/s00170-014-5832-5

    Article  Google Scholar 

  25. Ni J, Tang WC, Pan M, Qiu X, Xing Y (2018) Assembly sequence optimization for minimizing the riveting path and overall dimensional error. Proc Inst Mech Eng B–J Eng Ma 232(14):2605–2615. https://doi.org/10.1177/0954405417699012

    Article  Google Scholar 

  26. Wei HP, Yang YH, Han B (2019) Stacking yield prediction of package–on–package assembly using uncertainty propagation analysis–Part II: implementation of stochastic model. J Electron Packaging 142:1. https://doi.org/10.1115/1.4044218

    Google Scholar 

  27. Zhang T, Shi J (2016) Stream of variation modeling and analysis for compliant composite part assembly-Part i: single-station processes. J Manuf Sci Eng 138:12. https://doi.org/10.1115/1.4033231

    Google Scholar 

  28. Zhang T, Shi J (2016) Stream of variation modeling and analysis for compliant composite part assembly-Part II: multistation processes. J Manuf Sci Eng 138:12. https://doi.org/10.1115/1.4033282

    Google Scholar 

  29. Angelini G, Bonanni T, Corsini A, Delibra G, Tieghi L, Volponi D (2018) A meta–model for aerodynamic properties of a reversible profile in cascade with variable stagger and solidity, Turbo Expo: Power for Land, Sea, and Air, Volume 1: Aircraft Engine; Fans and Blowers; Marine, https://doi.org/10.1115/GT2018-76363

  30. Bamberger K, Carolus T (2014) Performance prediction of axial fans by CFD–trained meta–models, Turbo Expo: Power for Land, Sea, and Air, Volume 1A: Aircraft Engine; Fans and Blowers https://doi.org/10.1115/GT2014-26877

  31. Zhang Z, Demory B, Henner M, Ferrand P, Gillot F, Beddadi Y, Franquelin F, Marion V (2014) Space infill study of kriging meta-model for multi-objective optimization of an engine cooling fan, Turbo Expo: Power for Land, Sea, and Air, Volume 1A: Aircraft Engine; Fans and Blowers, https://doi.org/10.1115/GT2014-25281

  32. Karabadji NEI, Khelf I, Seridi H, Aridhi S, Remond D, Dhifli W (2019) a data sampling and attribute selection strategy for improving decision tree construction. Expert Syst Appl 129:84–96. https://doi.org/10.1016/j.eswa.2019.03.052

    Article  Google Scholar 

  33. Zhang Z, Hu C, Fan X, Liao B, Li Y, Zhu J, Zhang L (2019) A direct method of nuclear pulse shape discrimination based on principal component analysis and support vector machine. J Instrum 14(06):P06020. https://doi.org/10.1088/1748-0221/14/06/p06020

    Article  Google Scholar 

  34. Li X, Yang Y, Pan H, Cheng J, Cheng JS (2019) a novel deep stacking least squares support vector machine for rolling bearing fault diagnosis. Comput Ind 110:36–47. https://doi.org/10.1016/j.compind.20190.05.005

    Article  Google Scholar 

  35. Lin Q, Chen S, Lin C (2019) Parametric fault diagnosis based on fuzzy cerebellar model neural networks. IEEE Trans Ind Electron 66(10):8104–8115, https://doi.org/10.1109/TIE. 2884195:2018

    Google Scholar 

  36. Stief A, Ottewill JR, Baranowski J, Orkisz M (2019) A PCA and two-stage bayesian sensor fusion approach for diagnosing electrical and mechanical faults in induction motors. IEEE Trans Ind Electron 66(12):9510–9520, https://doi.org/10.1109/TIE. 2891453:2019

    Google Scholar 

  37. Alzahed AM, Mikki SM, Antar YMM (2019) Nonlinear mutual coupling compensation operator design using a novel electromagnetic machine learning paradigm. IEEE Antenn Wirel Propag Lett 18(5):861–865. https://doi.org/10.1109/LAWP.2019.2903787

    Article  Google Scholar 

  38. Zhou J, Qian H, Lu X, Duan Z, Huang H, Shao Z (2019) Polynomial activation neural networks: modeling, stability analysis and coverage BP–training. Neurocomputing 359:227–240. https://doi.org/10.1016/j.neucom..2019.06.004

    Article  Google Scholar 

  39. Petersen P, Voigtlaender F (2018) Optimal approximation of piecewise smooth functions using deep reLU neural networks. Neural Networks 108:296–330. https://doi.org/10.1016/j.neunet.2018.08.019

    Article  Google Scholar 

  40. Liu H, Mi X, Li Y, Xu Y (2019) Smart wind speed deep learning based multi–step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression,. Renewable Energy 143:842–854. https://doi.org/10.1016/j.renene.2019.05.039

    Article  Google Scholar 

  41. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Networks 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

Download references

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and publication of this article: the National Key R&D Program of China (Grant No. 2018YFB1700700) and the National Natural Science Foundation of China (51875516).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lemiao Qiu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The corresponding Jacobian matrix JFE0 of FE0 is

$$ {J_{FE0}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0&0&0\\ 0&1&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&1&0\\ 0&0&0&0&0&1 \end{array}} \right]. $$
(A1.1)

The corresponding Jacobian matrixes JFE1JFE4 of FE1FE4 are

$$ {J_{FE1 - FE4}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0&{35}&0\\ 0&1&0&{ - 35}&0&0\\ 0&0&1&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&1&0\\ 0&0&0&0&0&1 \end{array}} \right]. $$
(A1.2)

The corresponding Jacobian matrix \({J^{\prime }_{FE0}}\) of \(FE^{\prime }_0\) is

$$ {J^{\prime}_{FE0}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0&0&0\\ 0&1&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&1&0\\ 0&0&0&0&0&1 \end{array}} \right]. $$
(A1.3)

The corresponding Jacobian matrixes \({J^{\prime }_{FE1}} - {J^{\prime }_{FE4}}\) of \(FE^{\prime }_1 - FE^{\prime }_4\) are

$$ {J^{\prime}_{FE1 - FE4}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0&{35}&{ - 60}\\ 0&1&0&{ - 35}&0&0\\ 0&0&1&{60}&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&1&0\\ 0&0&0&0&0&1 \end{array}} \right]. $$
(A1.4)

The corresponding Jacobian matrix JFE5 of FE5 is

$$ {J_{FE5}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0&{35}&{ - 75}\\ 0&1&0&{ - 35}&0&0\\ 0&0&1&{75}&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&1&0\\ 0&0&0&0&0&1 \end{array}} \right]. $$
(A1.5)

T1T4 are

$$ {T_{1}} = {\left[ {\begin{array}{*{20}{c}} {\frac{{{x^{2}} - 32}}{2}}&0&{\frac{{{x^{2}} - 32}}{2} + {x^{1}} - 35}&{\frac{{{x^{2}} - 32}}{{10}}}&0&{\frac{{{x^{2}} - 32}}{{10}}} \end{array}} \right]^{\text{T}}}, $$
(A1.6)
$$ {T_{2}} = {\left[ {\begin{array}{*{20}{c}} {\frac{{{x^{3}} - 32}}{2}}&0&{\frac{{{x^{3}} - 32}}{2}}&{\frac{{{x^{3}} - 32}}{{10}}}&0&{\frac{{{x^{3}} - 32}}{{10}}} \end{array}} \right]^{\text{T}}}, $$
(A1.7)
$$ {T_{3}} = {\left[ {\begin{array}{*{20}{c}} {\frac{{{x^{4}} - 12}}{2}}&0&{\frac{{{x^{4}} - 12}}{2}}&{\frac{{{x^{4}} - 12}}{{10}}}&0&{\frac{{{x^{4}} - 12}}{{10}}} \end{array}} \right]^{\text{T}}}, $$
(A1.8)
$$ {T_{4}} = {\left[ {\begin{array}{*{20}{c}} {\frac{{{x^{5}} - 12}}{2}}&0&{\frac{{{x^{5}} - 12}}{2}}&{\frac{{{x^{5}} - 12}}{{{x^{11}}}}}&0&{\frac{{{x^{5}} - 12}}{{{x^{11}}}}} \end{array}} \right]^{\text{T}}}; $$
(A1.9)

\(T^{\prime }_1-T^{\prime }_4\) are

$$ {T^{\prime}_{1}} = {\left[ {\begin{array}{*{20}{c}} {\frac{{{x^{7}} - 32}}{2}}&0&{\frac{{{x^{7}} - 32}}{2} + {x^{6}} - 35}&{\frac{{{x^{7}} - 32}}{{10}}}&0&{\frac{{{x^{7}} - 32}}{{10}}} \end{array}} \right]^{\text{T}}}, $$
(A1.10)
$$ {T^{\prime}_{2}} = {\left[ {\begin{array}{*{20}{c}} {\frac{{{x^{8}} - 32}}{2}}&0&{\frac{{{x^{8}} - 32}}{2}}&{\frac{{{x^{8}} - 32}}{{10}}}&0&{\frac{{{x^{8}} - 32}}{{10}}} \end{array}} \right]^{\text{T}}}, $$
(A1.11)
$$ {T_{3'}} = {\left[ {\begin{array}{*{20}{c}} {\frac{{{x^{9}} - 12}}{2}}&0&{\frac{{{x^{9}} - 12}}{2}}&{\frac{{{x^{9}} - 12}}{{10}}}&0&{\frac{{{x^{9}} - 12}}{{10}}} \end{array}} \right]^{\text{T}}}, $$
(A1.12)
$$ {T^{\prime}_{4}} = {\left[ {\begin{array}{*{20}{c}} {\frac{{{x^{10}} - 12}}{2}}&0&{\frac{{{x^{10}} - 12}}{2}}&{\frac{{{x^{10}} - 12}}{{{x^{12}} - 49}}}&0&{\frac{{{x^{10}} - 12}}{{{x^{12}} - 49}}} \end{array}} \right]^{\text{T}}}; $$
(A1.13)

T5 is

$$ {T_{5}} = {\left[ {\begin{array}{*{20}{c}} 0&{{x^{12}} - 80}&0&{\frac{{{x^{12}} - 80}}{{{x^{10}}}}}&0&{\frac{{{x^{12}} - 80}}{{{x^{10}}}}} \end{array}} \right]^{\text{T}}}. $$
(A1.14)

Appendix : 2

The corresponding Jacobian matrixes JFE0JFE2 of FE0FE2 are

$$ {J_{FE0}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0&{35}&0\\ 0&1&0&{ - 35}&0&0\\ 0&0&1&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&1&0\\ 0&0&0&0&0&1 \end{array}} \right], $$
(A2.1)
$$ {J_{FE1}} = \left[ {\begin{array}{*{20}{c}} {\text{1}}&{\text{0}}&{\text{0}}&{\text{0}}&{{\text{35}}}&{{\text{ - 37}}{\text{.5}}}\\ {\text{0}}&{\text{1}}&{\text{0}}&{{\text{ - 35}}}&{\text{0}}&{\text{0}}\\ {\text{0}}&{\text{0}}&{\text{1}}&{{\text{37}}{\text{.5}}}&{\text{0}}&{\text{0}}\\ {\text{0}}&{\text{0}}&{\text{0}}&{\text{1}}&{\text{0}}&{\text{0}}\\ {\text{0}}&{\text{0}}&{\text{0}}&{\text{0}}&{\text{1}}&{\text{0}}\\ {\text{0}}&{\text{0}}&{\text{0}}&{\text{0}}&{\text{0}}&{\text{1}} \end{array}} \right], $$
(A2.2)
$$ {J_{FE2}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0&{35}&{ - 45}\\ 0&1&0&{ - 35}&0&0\\ 0&0&1&{45}&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&1&0\\ 0&0&0&0&0&1 \end{array}} \right]. $$
(A2.3)

T0T2 are

$$ {T_{0}} = {\left[ {\begin{array}{*{20}{c}} {\frac{{{x^{1}} - 12}}{2}}&0&{\frac{{{x^{1}} - 12}}{2}}&{\frac{{{x^{1}} - 12}}{{10}}}&0&{\frac{{{x^{1}} - 12}}{{10}}} \end{array}} \right]^{\text{T}}}, $$
(A2.4)
$$ \begin{array}{@{}rcl@{}} {T_{1}} &= &{\bigg[ {\begin{array}{*{20}{c}} {\frac{{{x^{3}} - 15}}{2}}&{{x^{4}} - 35}&{\frac{{{x^{3}} - 15}}{2}}&{\min \left( {\frac{{{x^{4}} - 35}}{{20}},\frac{{{x^{3}} - 15}}{{14}}} \right)}&0 \end{array}}}\\ &&~~{ {\begin{array}{*{20}{c}} {\min \left( {\frac{{{x^{4}} - 35}}{{20}},\frac{{{x^{3}} - 15}}{{14}}} \right)} \end{array}} \bigg]^{\text{T}}}, \end{array} $$
(A2.5)
$$ {T_{2}} = {\left[ {\begin{array}{*{20}{c}} {\frac{{{x^{3}} - 15}}{2}}&0&{\frac{{{x^{3}} - 15}}{2}}&{\frac{{{x^{1}} - 15}}{{15}}}&0&{\frac{{{x^{3}} - 15}}{{15}}} \end{array}} \right]^{\text{T}}}. $$
(A2.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Qiu, L., Wang, Z. et al. A prediction method of mechanical product assembly precision based on the fusion of measured samples and assembly feature fidelity samples. Int J Adv Manuf Technol 111, 2877–2890 (2020). https://doi.org/10.1007/s00170-020-06289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06289-4

Keywords

Navigation