Skip to main content
Log in

Magnetic Coupling of the Solar Hemispheres During the Solar Cycle

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

This work is devoted to the study of peculiarities in the magnetic coupling of the solar hemispheres over a solar activity cycle. Two approaches have been used. We have studied (i) the magnetic coupling of active regions (ARs) located in different hemispheres in the vicinity of the central meridian and, simultaneously, in the vicinity of the equator and (ii) the properties and time variation of the meridional component of the equatorial magnetic field derived from a potential-field source surface (PFSS) reconstruction at the heliocentric distance of 1.1 solar radii. In the first case, it was shown that most of the ARs in the selected pairs were magnetically connected by field lines in their leading parts. In the second case, the magnetic field monthly mean meridional component, \(B_{\theta }\), in the equatorial plane, which magnetically connects the two hemispheres, displayed a cyclic time variation. In the process, the extreme values of \(B_{\theta }\) (both positive and negative) coincided in time with the sunspot maxima, and the amplitude of the \(B_{\theta }\) extreme values decreased with decreasing height of the sunspot activity cycle. The sign of the \(B_{\theta }\) extreme value was opposite to the sign of the forthcoming extreme value of the polar field, while the sign of \(B_{\theta }\) coincided with that of the field lines connecting the leading spots. This means that the polar field is indeed generated by the trailing spots of ARs, and the magnetic flux of the leading spots closes through the equator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9(1), 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Levine, R.H., Stix, M., Harvey, J.: 1977, High resolution mapping of the magnetic field of the solar corona. Solar Phys. 51(2), 345. DOI. ADS.

    Article  ADS  Google Scholar 

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-YEAR cycle. Astrophys. J. 133, 572. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bisoi, S.K., Janardhan, P.: 2020, A new tool for predicting the solar cycle: Correlation between flux transport at the equator and the poles. Solar Phys. 295(6), 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cameron, R.H., Jiang, J., Schüssler, M.: 2016, Solar Cycle 25: Another moderate cycle? Astrophys. J. Lett. 823(2), L22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7(1), 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Jager, C., Akasofu, S.-I., Duhau, S., Livingston, W.C., Nieuwenhuijzen, H., Potgieter, M.S.: 2016, A remarkable recent transition in the solar dynamo. Space Sci. Rev. 201, 109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Georgieva, K.: 2011, Why the sunspot cycle is double peaked. ISRN Astron. Astrophys. 2011, 437838. DOI. ADS.

    Article  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Yashiro, S., Akiyama, S.: 2018, Long-term solar activity studies using microwave imaging observations and prediction for cycle 25. J. Atmos. Solar-Terr. Phys. 176, 26. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, Y., Ding, M.D., Liu, Y., Sun, X.D., DeRosa, M.L., Wiegelmann, T.: 2012, Modeling magnetic field structure of a solar active region corona using nonlinear force-free fields in spherical geometry. Astrophys. J. 760(1), 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harvey, K.L.: 1996, Large scale patterns of magnetic activity and the solar cycle. 188th AAS Meeting, No. 33.02. Bull. Am. Astron. Soc. 28, 867. ADS.

    ADS  Google Scholar 

  • Hathaway, D.H., Upton, L.A.: 2016, Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J. Geophys. Res. 121(11), 10,744. DOI. ADS.

    Article  Google Scholar 

  • Hoeksema, J.T.: 1984, Structure and Evolution of the Large Scale Solar and Heliospheric Magnetic Fields. Thesis (Ph.D.)-Stanford University. Source: Dissertation Abstracts International, volume 45-06, Section B, page 1811. ADS.

  • Hoeksema, J.T., Scherrer, P.H.: 1984, Harmonic analysis of the solar magnetic field. In: ESA the Hydromagnetics of the Sun, SEE N85-25091 14-92, 269. ADS.

    Google Scholar 

  • Iijima, H., Hotta, H., Imada, S.: 2019, Effect of morphological asymmetry between leading and following sunspots on the prediction of solar cycle activity. Astrophys. J. 883, 241. DOI. ADS.

    Article  Google Scholar 

  • Iijima, H., Hotta, H., Imada, S., Kusano, K., Shiota, D.: 2017, Improvement of solar-cycle prediction: Plateau of solar axial dipole moment. Astron. Astrophys. 607, L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiang, J., Cao, J.: 2018, Predicting solar surface large-scale magnetic field of Cycle 24. J. Atmos. Solar-Terr. Phys. 176, 34. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.: 2014, Magnetic flux transport at the solar surface. Space Sci. Rev. 186(1), 491. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krause, F., Radler, K.H.: 1980, Mean Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford. ADS.

    MATH  Google Scholar 

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275(1–2), 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Solar cycle propagation, memory, and prediction: Insights from a century of magnetic proxies. Astrophys. J. Lett. 767(2), L25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Norton, A.A., Charbonneau, P., Passos, D.: 2014, Hemispheric coupling: comparing dynamo simulations and observations. Space Sci. Rev. 186(1–4), 251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Obridko, V.N., Kharshiladze, A.F., Shelting, B.D.: 1996, On calculating the solar wind parameters from the solar magnetic field data. Astron. Astrophys. Trans. 11(1), 65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Obridko, V.N., Nagovitsyn, Yu.A., Georgieva, K.: 2012, The Unusual Sunspot Minimum: Challenge to the Solar Dynamo Theory, Astrophys. Space Sci. Proc. 30, 1. DOI. Springer, Berlin. ADS.

    Article  ADS  Google Scholar 

  • Obridko, V.N., Shelting, B.D.: 2017, Meridional component of the large-scale magnetic field at minimum and characteristics of the subsequent solar activity cycle. Astron. Lett. 43, 697. DOI. ADS.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J. 122, 293. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Petrovay, K., Talafha, M.: 2019, Optimization of surface flux transport models for the solar polar magnetic field. Astron. Astrophys. 632, A87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rudenko, G.V.: 2001, Extrapolation of the solar magnetic field within the potential-field approximation from full-disk magnetograms. Solar Phys. 198(1), 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6(3), 442. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sokoloff, D., Fioc, M., Nesme-Ribes, E.: 1996, Asymptotic properties of dynamo waves. Magnetohydrodynamics 31, 18.

    MathSciNet  MATH  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748(2), 77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sykora, J., Badalyan, O.G., Obridko, V.N.: 2002, Relationship between the coronal shape and the magnetic field topology during the solar cycle. Adv. Space Res. 29(3), 395. DOI. ADS.

    Article  ADS  Google Scholar 

  • Trujillo Bueno, J., Shchukina, N., Asensio Ramos, A.: 2004, A substantial amount of hidden magnetic energy in the quiet sun. Nature 430(6997), 326. DOI. ADS.

    Article  ADS  Google Scholar 

  • Upton, L., Hathaway, D.H.: 2014a, Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Upton, L., Hathaway, D.H.: 2014b, Effects of meridional flow variations on Solar Cycles 23 and 24. Astrophys. J. 792, 142. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zagainova, Y.S., Fainshtein, V.G., Obridko, V.N., Rudenko, V.G.: 2017, Comparison of magnetic properties and shadow area of leading and trailing spots with different asymmetries. Geomagn. Aeron. 57(8), 946. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the SOLIS, WSO, and SDO teams for the free access to their data. The work was supported by the Basic Research program II.16 and RFBR grant No. 20-02-00150. G.V. Rudenko would like to thank Irkutsk Supercomputer Center of SB RAS for providing the access to HPC-cluster “Akademik V.M. Matrosov” (Irkutsk Supercomputer Center of SB RAS, Irkutsk: ISDCT SB RAS; http://hpc.icc.ru, accessed 16.05.2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Obridko.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obridko, V.N., Fainshtein, V.G., Zagainova, Y.S. et al. Magnetic Coupling of the Solar Hemispheres During the Solar Cycle. Sol Phys 295, 149 (2020). https://doi.org/10.1007/s11207-020-01716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01716-x

Keywords

Navigation