Skip to main content

Advertisement

Log in

Energy determines multiple stability in time-delayed systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Infinite dimensions always challenge the analysis of multiple stability in nonlinear time-delayed systems, as the computation and visualization of conventional basin of attraction are hampered by the increase in systems’ dimensions. To address this issue, this paper introduces an orthonormal basis to approximate the delayed states, uses their signal energy to represent them, and generalises the concept of basin of attraction into stochastic, where each pixel of the basin has the same energy level for each delayed state but corresponds to many initial conditions. Thus, the probabilities are estimated by Monte Carlo method, which is then extensively boosted by artificial neural networks including both classification and regression types. This procedure has been successively applied in the analysis of multiple stability in three typical time-delayed systems, which are a two-dimensional autonomous cutting process, a three-dimensional autonomous neural system, and a two-dimensional non-autonomous forced vibration isolator. They, respectively, have one, two, and two delayed states, with two, three, and five coexisting attractors. It is found that the energy distribution in the delayed state determines both the convergence of Monte Carlo simulation and sensitivity of the classification neural network. It is also seen that the performance of classification neural networks decreases with respect to the increase in the number of attractors, but the regression neural networks show a robuster performance. As a result, the stochastic basin of attraction can be accurately and efficiently computed to reveal the multiple stability in various time-delayed systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yan, Y., Xu, J., Wiercigroch, M.: Estimation and improvement of cutting safety. Nonlinear Dyn. 98(4), 2975–2988 (2019). https://doi.org/10.1007/s11071-019-04980-0

    Article  Google Scholar 

  2. Song, Z., Zhen, B., Hu, D.: Multiple bifurcations and coexistence in an inertial two-neuron system with multiple delays. Cognit. Neurodyn. 14(3), 359–374 (2020). https://doi.org/10.1007/s11571-020-09575-9

    Article  Google Scholar 

  3. Sun, X., Xu, J., Fu, J.: The effect and design of time delay in feedback control for a nonlinear isolation system. Mech. Syst. Signal Process. 87(Part A), 206–217 (2017). https://doi.org/10.1016/j.ymssp.2016.10.022

    Article  Google Scholar 

  4. Zhang, L., Stepan, G., Insperger, T.: Saturation limits the contribution of acceleration feedback to balancing against reaction delay. J. R. Soc. Interface 15(138), 20170771 (2018). https://doi.org/10.1098/rsif.2017.0771

    Article  Google Scholar 

  5. Zhang, S., Xu, J., Chung, K.W.: Desynchronization-based congestion suppression for a star-type internet system with arbitrary dimension. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2017.05.023

    Article  Google Scholar 

  6. Hale, J.K.: Functional Differential Equations. Springer, Berlin (1971)

    Book  Google Scholar 

  7. Lenci, S., Orlando, D., Rega, G., Gonçalves, P.B.: Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos 22(4), 047502 (2012). https://doi.org/10.1063/1.4746094

    Article  MathSciNet  MATH  Google Scholar 

  8. Shang, H., Xu, J.: Delayed feedbacks to control the fractal erosion of safe basins in a parametrically excited system. Chaos Solitons Fract. 41(4), 1880–1896 (2009). https://doi.org/10.1016/j.chaos.2008.07.040

    Article  Google Scholar 

  9. Shang, H.: Pull-in instability of a typical electrostatic MEMS resonator and its control by delayed feedback. Nonlinear Dyn. 90(1), 171–183 (2017). https://doi.org/10.1007/s11071-017-3653-4

    Article  MATH  Google Scholar 

  10. Höhne, K., Shirahama, H., Choe, C.-U., Benner, H., Pyragas, K., Just, W.: Global properties in an experimental realization of time-delayed feedback control with an unstable control loop. Phys. Rev. Lett. 98(21), 214102 (2007). https://doi.org/10.1103/PhysRevLett.98.214102

    Article  Google Scholar 

  11. Ji, J.C.: Two families of super-harmonic resonances in a time-delayed nonlinear oscillator. J. Sound Vib. 349, 299–314 (2015). https://doi.org/10.1016/j.jsv.2015.03.049

    Article  Google Scholar 

  12. Wang, H., Hu, H., Wang, Z.: Global dynamics of a duffing oscillator with delayed displacement feedback. Int. J. Bifurc. Chaos 14(08), 2753–2775 (2004). https://doi.org/10.1142/S0218127404010990

    Article  MathSciNet  MATH  Google Scholar 

  13. Zheng, Y.-G., Sun, J.-Q.: Attractive domain of nonlinear systems with time-delayed feedback control and time-delay effects. Proc. IUTAM 22, 51–58 (2017). https://doi.org/10.1016/j.piutam.2017.08.008

    Article  Google Scholar 

  14. Hu, H.: Global dynamics of a duffing system with delayed velocity feedback. In: Rega, G., Vestroni, F. (eds.) IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, pp. 335–344. Springer Netherlands, Dordrecht (2005). https://doi.org/10.1007/1-4020-3268-4_32

    Chapter  Google Scholar 

  15. Yan, Y., Xu, J., Wiercigroch, M.: Basins of attraction of the bistable region of time-delayed cutting dynamics. Phys. Rev. E 96(3), 032205 (2017). https://doi.org/10.1103/PhysRevE.96.032205

    Article  MathSciNet  Google Scholar 

  16. Leng, S., Lin, W., Kurths, J.: Basin stability in delayed dynamics. Sci. Rep. 6, 1–6 (2016). https://doi.org/10.1038/srep21449

    Article  Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  18. Li, K., Kou, J., Zhang, W.: Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple mach numbers. Nonlinear Dyn. 96(3), 2157–2177 (2019). https://doi.org/10.1007/s11071-019-04915-9

    Article  Google Scholar 

  19. Ouyang, D., He, B., Ghorbani, A., Yuan, N., Ebinger, J., Langlotz, C.P., Heidenreich, P.A., Harrington, R.A., Liang, D.H., Ashley, E.A., Zou, J.Y.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020). https://doi.org/10.1038/s41586-020-2145-8

    Article  Google Scholar 

  20. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat: Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195–204 (2019). https://doi.org/10.1038/s41586-019-0912-1

    Article  Google Scholar 

  21. Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A.: Machine learning for molecular and materials science. Nature 559(7715), 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2

    Article  Google Scholar 

  22. Mennel, L., Symonowicz, J., Wachter, S., Polyushkin, D.K., Molina-Mendoza, A.J., Mueller, T.: Ultrafast machine vision with 2d material neural network image sensors. Nature 579(7797), 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x

    Article  Google Scholar 

  23. Champion, K., Lusch, B., Kutz, J.N., Brunton, S.L.: Data-driven discovery of coordinates and governing equations. Proc. Natl. Acad. Sci. (2019). https://doi.org/10.1073/pnas.1906995116

    Article  MATH  Google Scholar 

  24. Liu, Z., Fang, H., Xu, J.: Identification of piecewise linear dynamical systems using physically-interpretable neural-fuzzy networks: Methods and applications to origami structures. Neural Netw. 116, 74–87 (2019). https://doi.org/10.1016/j.neunet.2019.04.007

    Article  MATH  Google Scholar 

  25. Jiang, N., Xu, J., Zhang, S.: Event-triggered adaptive neural network control of manipulators with model-based weights initialization method. Int. J. Precis. Eng. Manuf. Green Technol. 7(2), 443–454 (2020). https://doi.org/10.1007/s40684-019-00095-4

    Article  Google Scholar 

  26. Rega, G., Lenci, S.: Dynamical integrity and control of nonlinear mechanical oscillators. J. Vib. Control 14(1–2), 159–179 (2008). https://doi.org/10.1177/1077546307079403

    Article  MATH  Google Scholar 

  27. Wahi, P., Chatterjee, A.: Galerkin projections for delay differential equations. ASME J. Dyn. Syst. Meas. Control 127, 80–87 (2005). https://doi.org/10.1115/1.1870042

    Article  Google Scholar 

  28. Zhang, Y., Jin, Y., Xu, P., Xiao, S.: Stochastic bifurcations in a nonlinear tri-stable energy harvester under colored noise. Nonlinear Dyn. 99(2), 879–897 (2020). https://doi.org/10.1007/s11071-018-4702-3

    Article  Google Scholar 

  29. Hagan, M.T., Demuth, H.B., Beale, M.H., De Jesús, O.: Neural Network Design (2014)

  30. Jin, X., Zhang, X., Huang, K., Geng, G.: Stochastic conjugate gradient algorithm with variance reduction. IEEE Trans. Neural Netw. Learn. Syst. 30(5), 1360–1369 (2019). https://doi.org/10.1109/TNNLS.2018.2868835. iEEE Transactions on Neural Networks and Learning Systems

    Article  MathSciNet  Google Scholar 

  31. Hunter, A., Kennedy, L., Henry, J., Ferguson, I.: Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Comput. Methods Programs Biomed. 62(1), 11–19 (2000). https://doi.org/10.1016/S0169-2607(99)00046-2

    Article  Google Scholar 

  32. Molnár, T.G., Dombovari, Z., Insperger, T., Stépán, G.: On the analysis of the double Hopf bifurcation in machining processes via centre manifold reduction. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170502 (2017). https://doi.org/10.1098/rspa.2017.0502

    Article  MathSciNet  MATH  Google Scholar 

  33. Sykora, H.T., Bachrathy, D., Stepan, G.: Stochastic semi-discretization for linear stochastic delay differential equations. Int. J. Numer. Methods Eng. 119(9), 879–898 (2019). https://doi.org/10.1002/nme.6076

    Article  MathSciNet  Google Scholar 

  34. Yan, Y., Xu, J., Wiercigroch, M.: Modelling of regenerative and frictional cutting dynamics. Int. J. Mech. Sci. 156, 86–93 (2019). https://doi.org/10.1016/j.ijmecsci.2019.03.032

    Article  Google Scholar 

  35. Yan, Y., Wiercigroch, M.: Dynamics of rotary drilling with non-uniformly distributed blades. Int. J. Mech. Sci. 160, 270–281 (2019). https://doi.org/10.1016/j.ijmecsci.2019.05.016

    Article  Google Scholar 

  36. Yan, Y., Safdari, A., Kim, K.C.: Visualization of nanofluid flow field by adaptive-network-based fuzzy inference system (anfis) with cubic interpolation particle approach. J. Visual. 23(2), 259–267 (2020). https://doi.org/10.1007/s12650-019-00623-z

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grants No. 11872147, 12072068, 11932015, 11502048, and 11772229) and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2018J078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zhang, S., Guo, Q. et al. Energy determines multiple stability in time-delayed systems. Nonlinear Dyn 102, 2399–2416 (2020). https://doi.org/10.1007/s11071-020-06057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06057-9

Keywords

Navigation