Skip to main content
Log in

A potential endogenous gibberellin-mediated signaling cascade regulated floral transition in Magnolia × soulangeana ‘Changchun’

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The floral transition is a critical developmental switch in plants, and has profound effects on the flower production and yield. Magnolia × soulangeana ‘Changchun’ is known as a woody ornamental plant, which can bloom in spring and summer, respectively. In this study, anatomical observation, physiological measurement, transcriptome, and small RNA sequencing were performed to investigate potential endogenous regulatory mechanisms underlying floral transition in ‘Changchun’. Transition of the shoot apical meristem from vegetative to reproductive growth occurred between late April and early May. During this specific developmental process, a total of 161,645 unigenes were identified, of which 73,257 were significantly differentially expressed, while a number of these two categories of miRNAs were 299 and 148, respectively. Further analysis of differentially expressed genes (DEGs) revealed that gibberellin signaling could regulate floral transition in ‘Changchun’ in a DELLA-dependent manner. In addition, prediction and analysis of miRNA targeted genes suggested that another potential molecular regulatory module was mediated by the miR172 family and other several novel miRNAs (Ms-novel_miR139, Ms-novel_miR229, and Ms-novel_miR232), with the participation of up- or down-regulating genes, including MsSVP, MsAP2, MsTOE3, MsAP1, MsGATA6, MsE2FA, and MsMDS6. Through the integrated analysis of mRNA and miRNA, our research results will facilitate the understanding of the potential molecular mechanism underlying floral transition in ‘Changchun’, and also provide basic experimental data for the plant germplasm resources innovation in Magnolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw sequence data from this study have been deposited at NCBI Sequence Read Archive (Accession Number PRJNA663115, PRJNA663196).

References

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-Like target genes. Plant Cell 15:2730–2741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benlloch R, Kim MC, Sayou C, Thévenon E, Parcy F, Nilsson O (2011) Integrating long-day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1. Plant J 67:1094–1102

    CAS  PubMed  Google Scholar 

  • Blázquez M, Koornneef M, Putterill J (2001) Flowering on time: genes that regulate the floral transition. EMBO Rep 21:1078–1082

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by Apetala1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Castillejo C, Pelaz S (2008) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol 18:1338–1343

    CAS  PubMed  Google Scholar 

  • Chen XM (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    CAS  PubMed  Google Scholar 

  • Chen ZX, Li FL, Yang SN, Dong YB, Yuan QH, Wang F, Li WM, Jiang Y, Jia SR, Pei XW (2013) Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.). PLoS ONE 8:82844

    Google Scholar 

  • Chen YX, Chen YS, Shi CM et al (2017) Soapnuke: a mapreduce acceleration supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience. https://doi.org/10.1093/gigascience/gix120

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen XL, Qi SY, Zhang D, Li YM, An N, Zhao CP, Zhao J, Shah K, Han MY, Xing LB (2018) Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering ‘Qinguan’ and weakly flowering ‘Nagafu no. 2’ apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biol 18:370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HJ, Kim JJ, Lee JH, Kim WH, Jung J-H, Park C-M, Ahn JH (2012) SHORT VEGETATIVE PHASE (SVP) protein negatively regulates miR172 transcription via direct binding to the pri-miR172a promoter in Arabidopsis. FEBS Lett 586:2332–2337

    CAS  PubMed  Google Scholar 

  • Chuck GS, Tobias C, Sun L et al (2011) Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci USA 108:17550–17555

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Veylder L, Beeckman T, Beemster GTS et al (2002) Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. EMBO J 21:1360–1368

    PubMed  PubMed Central  Google Scholar 

  • Deng AX, Tan WM, He SP, Liu W, Nan TG, Li ZH, Wang BM, Li QX (2008) Monoclonal antibody-based enzyme linked immunosorbent assay for the analysis of jasmonates in plants. J Integr Plant Biol 50:1046–1052

    CAS  PubMed  Google Scholar 

  • Deng WW, Ying H, Helliwell CA, Taylor JM, Dennis ES (2011) FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. P Natl Acad Sci USA 108:6680–6685

    CAS  Google Scholar 

  • Deng SQ, Katoh M, Guan QW, Yin N, Li MY (2014) Interpretation of forest resources at the individual tree level at Purple Mountain, Nanjing City, China, using WorldView-2 imagery by combining GPS, RS and GIS technologies. Remote Sens 6:87–110

    Google Scholar 

  • Dornelas MC, Camargo RLB, Figueiredo LHM, Takita MA (2007) A genetic framework for flowering-time pathways in Citrus spp. Genet Mol Biol 3:769–779

    Google Scholar 

  • Eckardt NA (2007) GA perception and signal transduction: molecular interactions of the GA receptor GID1 with GA and the DELLA protein SLR1 in rice. Plant Cell 19:2095–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evers M, Huttner M, Duecka A, Meister G, Engelmann JC (2015) miRA: adaptable novel miRNA identification in plants using small RNA sequencing data. BMC Bioinformat 16:370

    Google Scholar 

  • Fahlgren N, Carrington JC (2010) miRNA target prediction in plants. In: Meyers BC, Green PJ (eds) Methods in molecular biology. Clifton, New Jersey, pp 51–57

    Google Scholar 

  • Galvão VC, Horrer D, Küttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139:4072–4082

    PubMed  Google Scholar 

  • Gao X, Zhang Y, He Z, Fu X (2017) Gibberellins. In: Li J, Li C, Smith SM (eds) Hormone metabolism and signaling in plants. Academic Press, San Diego

    Google Scholar 

  • Glazińska P, Zienkiewicz A, Wojciechowski W, Kopcewicz J (2009) The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil. J Plant Physiol 166:1801–1813

    PubMed  Google Scholar 

  • Gocal GF, Sheldon CC, Gubler F et al (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127:1682–1693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomi K, Matsuoka M (2003) Gibberellin signalling pathway. Curr Opin Plant Biol 6:489–493

    CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-Seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    CAS  PubMed  Google Scholar 

  • Han HJ, Liu GF, Zhang JQ, Zhang SS, Cai FF, Bao ZR, Zhang YP, Bao MZ (2016) Four SQUAMOSA PROMOTER BINDING PROTEIN-LIKE homologs from a basal eudicot tree (Platanus acerifolia) show diverse expression pattern and ability of inducing early flowering in Arabidopsis. Trees 30:1417–1428

    CAS  Google Scholar 

  • Hartmann U, Höhmann S, Nettesheim K, Wisman E, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360

    CAS  PubMed  Google Scholar 

  • Huo HQ, Wei SH, Bradford KJ (2016) DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proc Natl Acad Sci USA 113:2199–2206

    Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    CAS  PubMed  Google Scholar 

  • Jiang Z, Sun LY, Wei Q, Ju Y, Zou X, Wan XX, Liu X, Yin ZF (2020) A new insight into flowering regulation: molecular basis of flowering initiation in Magnolia ×soulangeana ‘Changchun.’ Genes 11:15

    CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    CAS  PubMed  Google Scholar 

  • Katahata S-I, Futamura N, Igasaki T, Shinohara K (2014) Functional analysis of SOC1-like and AGL6-like MADS-box genes of the gymnosperm Cryptomeria japonica. Tree Genet Genomes 10:317–327

    Google Scholar 

  • Khan MRG, Ai XY, Zhang JZ (2014) Genetic regulation of flowering time in annual and perennial plants. Wires RNA 5:347–359

    CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Liu C, Shen LS, Wu Y, Chen HY, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110–120

    CAS  PubMed  Google Scholar 

  • Li JL, Pan BZ, Niu LJ, Chen MS, Tang MY, Xu ZF (2018) Gibberellin inhibits floral initiation in the perennial woody plant Jatropha curcas. J Plant Growth Regul 37:999–1006

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2△△CT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Ma JB, Huang Y (2010) Post-transcriptional regulation of miRNA biogenesis and functions. Front Biol 5:32–40

    CAS  Google Scholar 

  • Marciniak K, Kućko A, Wilmowicz E, Świdziński M, Kęsy J, Kopcewicz J (2018) Photoperiodic flower induction in Ipomoea nil is accompanied by decreasing content of gibberellins. Plant Growth Regul 84:395–400

    CAS  Google Scholar 

  • Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7:e1000148

    PubMed  PubMed Central  Google Scholar 

  • Meng YJ, Shao CG, Wang HZ, Ma XX, Chen M (2013) Construction of gene regulatory networks mediated by vegetative and reproductive stage-specific small RNAs in rice (Oryza sativa). New Phytol 197:441–453

    CAS  PubMed  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell. https://doi.org/10.1105/tpc.001362

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Fambuena N, Mesejo C, González-Mas MC, Iglesias DJ, Primo-Millo E, Agustí M (2012) Gibberellic acid reduces flowering intensity in sweet orange [Citrus sinensis (L.) Osbeck] by repressing CiFT gene expression. J Plant Growth Regul 31:529–536

    Google Scholar 

  • Nie SS, Xu L, Wang Y, Huang DQ, Muleke EM, Sun XC, Wang RH, Xie Y, Gong YQ, Liu LW (2015) Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Nguyen KT, Park E, Jeon JS, Choi G (2013) DELLA proteins and their interacting RING finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis. Plant Cell 25:927–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394

    CAS  PubMed  Google Scholar 

  • Qin F, Kodaira KS, Maruyama K, Mizoi J, Tran LS, Fujita Y, Morimoto K, Shinozaki K, Yamaguchi-Shinozaki K (2011) SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response. Plant Physiol 157:1900–1913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richter R, Bastakis E, Schwechheimer C (2013a) Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiol 162:1992–2004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richter R, Behringer C, Zourelidou M, Schwechheimer C (2013b) Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proc Natl Acad Sci USA 110:13192–13197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AV, Blake PS, Lewis R, Taylor JM, Dunstan DI (1999) The effect of gibberellins on flowering in roses. J Plant Growth Regul 18:113–119

    CAS  PubMed  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez C, Villacreses J, Blanc N, Espinoza L, Martinez C, Pastor G, Manque P, Undurraga SF, Polanco V (2016) High quality RNA extraction from Maqui berry for its application in next-generation sequencing. SpringerPlus 5:1243–1249

    PubMed  PubMed Central  Google Scholar 

  • Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130:6001–6012

    CAS  PubMed  Google Scholar 

  • Schwab R (2012) The roles of miR156 and miR172 in phase change regulation. In: Sunkar R (ed) MicroRNAs in plant development and stress responses, signaling and communication in plants. Springer, New York

    Google Scholar 

  • Silverstone AL, Tseng TS, Swain SM, Dill A, Jeong SY, Olszewski NE, Sun TP (2007) Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. Plant Physiol 143:987–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) Busco: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv351

    Article  PubMed  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    CAS  PubMed  Google Scholar 

  • Sun TP (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun LM, Ai XY, Li WY, Guo WW, Deng XX, Hu CG, Zhang JZ (2012) Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing. PLoS ONE 7:e43760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas SG, Rieu I, Steber CM (2005) Gibberellin metabolism and signaling. Vitam Horm 72:289–338

    CAS  PubMed  Google Scholar 

  • van Dijk ADJ, Molenaar J (2017) Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time. PeerJ 5:e3197

    PubMed  PubMed Central  Google Scholar 

  • Wang FG (2001) The application of magnolia plants in landscape gardening. J Beijing Fore Univ 23:103–105

    CAS  Google Scholar 

  • Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–148

    PubMed  Google Scholar 

  • Wang BG, Zhang Q, Wang LG, Duan K, Pan AH, Tang XM, Sui SZ, Li MY (2011) The AGL6-like gene CpAGL6, a potential regulator of floral time and organ identity in wintersweet (Chimonanthus praecox). J Plant Growth Regul 30:343–352

    CAS  Google Scholar 

  • Wang ZJ, Huang JQ, Huang YJ, Li Z, Zheng BS (2012) Discovery and profiling of novel and conserved microRNAs during flower development in Carya cathayensis via deep sequencing. Planta 236:613–621

    CAS  PubMed  Google Scholar 

  • Weigel D, Meyerowitz EM (1993) Activation of floral homeotic genes in Arabidopsis. Science 261:1723–1726

    CAS  PubMed  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    CAS  PubMed  Google Scholar 

  • Wilkie JD, Sedgley M, Olesen T (2008) Regulation of floral initiation in horticultural trees. J Exp Bot 59:3215–3228

    CAS  PubMed  Google Scholar 

  • Winston E (1992) Evaluation of paclobutrazol on growth, flowering and yield of mango cv. Kensington Pride. Aust J Exp Agric 32:97–104

    CAS  Google Scholar 

  • Wu HJ, Ma YK, Chen T, Wang M, Wang XJ (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40:W22–W28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wang Y, Mi XF, Shan JX, Li XM, Xu JL, Lin HX (2016) The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing Cytokinin activity in rice panicle meristems. PLoS Genet 12:e1006386

    PubMed  PubMed Central  Google Scholar 

  • Xiao M, Li J, Li W et al (2017) MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol 14:1326–1334

    PubMed  Google Scholar 

  • Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol 142:280e293

    Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    CAS  PubMed  Google Scholar 

  • Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D (2009) The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, AND APETALA1. Dev Cell 17:268–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi N, Winter CM, Wu M-F, Kanno Y, Yamaguchi A, Seo M, Wagner D (2014) Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344:638–641

    CAS  PubMed  Google Scholar 

  • Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW (2012) Gibberellin regulates the Arabidopsis floral transition through miR156-targeted squamosa promoter binding–like transcription factors. Plant Cell 24:3320–3332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V (2011) Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. Planta 234:1285–1298

    CAS  PubMed  Google Scholar 

  • Zentella R, Zhang ZL, Park M et al (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zentella R, Sui N, Barnhill B et al (2017) The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat Chem Biol 13:479–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Sun C, Liu DD, Hao YJ, You CX (2015) Ectopic expression of the apple Md-miR172e gene alters flowering time and floral organ identity in Arabidopsis. Plant Cell Tiss Organ Cult 123:535–546

    CAS  Google Scholar 

  • Zhou CM, Wang JW (2013) Regulation of flowering time by microRNAs. J Genet Genom 40:211e215

    Google Scholar 

  • Zhu L, Guan YX, Liu YN, Zhang ZH, Jaffar MA, Song AP, Chen SM, Jiang JF, Chen FD (2020) Regulation of flowering time in chrysanthemum by the R2R3 MYB transcription factor CmMYB2 is associated with changes in gibberellin metabolism. Hortic Res 7:96

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Qiang Wei (Bamboo Research Institute, Nanjing Forestry University) for his useful advice and also help with molecular experiments.

Funding

This work was supported by grants from the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant Number SJKY19_0917), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Doctorate Fellowship Foundation of Nanjing Forestry University.

Author information

Authors and Affiliations

Authors

Contributions

Z.-F.Y. designed and supervised the project, reviewed drafts of the paper; L.-Y.S. conceived the conception, performed part of experiments, analyzed the data, and wrote the original draft manuscript; Z.J. collected the samples, analyzed the data, performed part of experiments, and checked and revised the manuscript; Y.J. performed the qRT-PCR experiment; X.Z. and X.-X.W. participated in analyzing the data and drew some figures and tables; Y.C. performed the phenologic observation.

Corresponding author

Correspondence to Zengfang Yin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 19328 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Jiang, Z., Ju, Y. et al. A potential endogenous gibberellin-mediated signaling cascade regulated floral transition in Magnolia × soulangeana ‘Changchun’. Mol Genet Genomics 296, 207–222 (2021). https://doi.org/10.1007/s00438-020-01740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01740-3

Keywords

Navigation