Skip to main content
Log in

Effects of Axial Static Magnetic Field on Inclusions Removal in the Liquid Melt Film During Electroslag Remelting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Magnetic-controlled Electroslag Remelting (MC-ESR) process has been proposed to improve the inclusion removal efficiency in recent years. In this study, the effects of axial static magnetic field (ASMF) on liquid melting film (LMF) and inclusion removal during this period in ESR process of GCr15 steel were studied by a series of MC-ESR experiments. The thickness of the characteristic position of LMF was reduced by 18.6 to 90.3 pct when a 50 mT ASMF was applied. The number and size of the inclusions in LMF were also decreased. In addition, the mechanisms of LMF thinning and inclusion removal efficiency improvement enhanced by the ASMF were interpreted in detail. Furthermore, a numerical simulation of the inclusion migration in LMF was also carried out to support the proposed mechanisms to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] S. Ahmadi, H. Arabi, A. Shokuhfar, A. Rezaei: J. Mater. Sci. Technol., 2009, vol. 25, pp. 592-596.

    CAS  Google Scholar 

  2. [2] B. Podgornik, V. Leskovšek, M. Godec, B. Senčič: Mater. Sci. Eng. A, 2014, vol. 599, pp. 81-86.

    Article  CAS  Google Scholar 

  3. [3] B. Naderi, J. Mohandesi: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2250-2258.

    Article  Google Scholar 

  4. [4] Q. Wang, Z. He, G. Li, B. Li, C. Zhu, P. Chen: Int. J. Heat Mass Tran, 2017, vol. 104, pp. 943-951.

    Article  CAS  Google Scholar 

  5. [5] Z. B. Li, J. W. Zhang, X. Q. Che: J. Iron. Steel. Res. Int, 1997, vol. 9, pp. 7-12.

    Google Scholar 

  6. [6] H. Wang, Y.B. Zhong, Q. Li, Y.P. Fang, W.L. Ren, Z.S. Lei, Z.M. Ren: Metall. Mater. Trans. B, 2016, vol. 48, pp. 655-663.

    Article  Google Scholar 

  7. Z.B. Li, W.H. Zhou, Y.D. Li: Steel, 1980, vol. 15, pp. 20–26.

    CAS  Google Scholar 

  8. [8] L. Rao, G.M. Peng, X.S. Ma, J.P. Xiao, S.F. Liang: Casting Technol., 2004, vol. 84, pp. 837-844.

    Google Scholar 

  9. [9] Y.F. Qi, J. Li, C.B. Shi, Y. Zhang, Q.T. Zhu, H. Wang: J. Mater. Process Technol., 2017, vol. 249, pp. 32-38.

    Article  CAS  Google Scholar 

  10. [10] M. Wang, X. Zha, M. Gao, Y. Ma, K. Liu, Y. Li: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5217-5231.

    Article  Google Scholar 

  11. [11] X. Shi, S.-C. Duan, W.-S. Yang, M.-T. Mao, H.-J. Guo, J. Guo: Metall. Mater. Trans. B, 2019, vol. 50, pp. 3072-3087.

    Article  Google Scholar 

  12. [12] J. Fu: Acta Metall. Sin., 1979, vol. 15, pp. 526-539.

    CAS  Google Scholar 

  13. Murgaš M, Chaus AS, Pokusa A, Pokusová M, ISIJ Int., 2000, vol. 40, pp. 980-986.

    Article  Google Scholar 

  14. [14] Y. Kompan, I. Protokovilov, Y. Fautrelle, Y. Gelfgat, A. Bojarevics: Magnetohydrodynamics, 2010, vol. 46, pp. 317-324.

    Article  Google Scholar 

  15. [15] G. Chen, Y.B. Zhong, M.L. Feng, Z.S. Lei, W.L. Ren, Z.M. Ren: Shanghai Metal, 2012, vol. 34, pp. 44-49.

    CAS  Google Scholar 

  16. [16] Q. Wang, H. Yan, F. Wang, B. Li: JOM, 2015, vol. 67, pp. 1821-1829.

    Article  CAS  Google Scholar 

  17. [17] Y.B. Zhong, Q. Li, Y.P. Fang, H. Wang, M.H. Peng, L.C. Dong, T.X. Zheng, Z.S. Lei, W.L. Ren, Z.M. Ren: Mater. Sci. Eng. A, 2016, vol. 660, pp. 118-126.

    Article  CAS  Google Scholar 

  18. [18] Y. Kompan: Advanced Light Alloys and Composites, Springer, Poland, 1998, pp. 153-158.

    Book  Google Scholar 

  19. [19] Y.Y. Kompan, I.V. Protokovilov: Metallic Materials with High Structural Efficiency, Springer, Dayton, 2004, pp. 413-418.

    Book  Google Scholar 

  20. [20] E. Shcherbinin, Y. Kompan: Magnetohydrodynamics, 2006, vol. 42, pp. 755-758.

    Google Scholar 

  21. [21] H. Wang, Y.B. Zhong, Q. Li, Y.P. Fang, W.L. Ren, Z.S. Lei, Z.M. Ren: ISIJ Int., 2016, vol.56, pp. 255-263.

    Article  CAS  Google Scholar 

  22. [22] D. Q. Geng, H. Leo, J. C. He: ISIJ Int. 2010, vol. 11, pp. 1597-1605.

    Article  Google Scholar 

  23. [23] H. T. Ling, L. F. Zhang, H. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2991-3012.

    Article  Google Scholar 

  24. [24] A. Kharicha, A. Ludwig, M. Wu: Mater. Sci. Eng. A, 2005, vol. 413, pp. 129-134.

    Article  Google Scholar 

  25. [25] H. Wang, Y.B. Zhong, L.C. Dong, Z. Shen, Q. Li, W. Li, T.X. Zheng, W.L. Ren, Z.S. Lei, Z.M. Ren: JOM, 2018, vol. 70, pp. 2917-2926.

    Article  Google Scholar 

  26. [26] A. Kharicha, M. Wu, A. Ludwig, E. Karimi-Sibaki: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1427-1434.

    Article  Google Scholar 

  27. [27] H. Wang, Y.B. Zhong, Q. Li, W. Q. Li, W.L. Ren, Z.S. Lei, Z.M. Ren, Q. He: ISIJ Int., 2017, vol. 57, pp. 2157-2164.

    Article  CAS  Google Scholar 

  28. [28] G. Du, J. Li, Z.B. Wang: ISIJ Int. 2017, vol. 58, pp. 78-87.

    Article  Google Scholar 

  29. Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2010, pp. 22–26.

    Google Scholar 

  30. [30] Q.F. Wu, Y.B. Zhong, M.L. Feng, Z.S. Lei, W.L. Ren, Y.Y. Fan, Z.M. Ren: J. of Iron Steel Res. Int., 2012, vol. 19, pp. 425-429.

    Google Scholar 

  31. [31] C.X. Sun, Y. F. Guo, Q. Li, Z. Shen, T. X. Zheng, H. Hang, W. L. Ren, Z. S. Lei, Y. B. Zhong, Metals. 2020, vol. 10, pp. 647-660.

    Article  CAS  Google Scholar 

  32. [32] P. G. Saffman: J. Fluid. Mech., 1965, vol. 22, pp. 385-388.

    Article  Google Scholar 

  33. [33] T. Toh, H. Hasegawa, H. Harada: ISIJ Int., 2001, vol. 41, pp. 1245-1251.

    Article  CAS  Google Scholar 

  34. E. Gutiérrez, S. Garcia Hernandez, J.d. Barreto-Sandoval: ISIJ Int., 2016, vol. 56, pp. 1–10.

  35. A. Kharicha, A. Ludwig, M. Wu: TMS Annual Meeting, 2011, vol. 2, pp. 771–78.

Download references

Acknowledgments

The authors gratefully acknowledged the financial support of the National Key Research and Development Program of China (2016YFB0300401, 2018YFF0109404, 2016YFB0301401), the National Natural Science Foundation of China (U1860202, U1732276, 50134010, 51704193, 51904184, 52004156), Science and Technology Commission of Shanghai Municipality (13JC14025000, 15520711000), and China Postdoctoral Science Foundation (2020M671072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Shen or Yunbo Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 29, 2020; accepted October 20, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Xia, Z., Shen, Z. et al. Effects of Axial Static Magnetic Field on Inclusions Removal in the Liquid Melt Film During Electroslag Remelting Process. Metall Mater Trans B 52, 282–291 (2021). https://doi.org/10.1007/s11663-020-02012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02012-6

Navigation