Skip to main content

Advertisement

Log in

Physical Simulation of a Nonconsumable Lance for Secondary Refining Operations

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this research, the proposal to use a nonconsumable lance or heat pipe to decrease the mixing times in a secondary refining ladle is evaluated. The main idea is to minimize the stirring times to get the complete mixing of liquid steel, mainly due to the fact that a consumable lance once its melted changes the operation conditions. Use of a nonconsumable lance is well known because of its excellent self-protective characteristics; in general, this kind of nonconsumable lance is used in almost any gas injection operation process. Hence, a set of experiments in a physical model demonstrated the viability and competitiveness of the nonconsumable lance in a secondary refining ladle. The results obtained in the physical modeling revealed that the vibration signals, acquired by the accelerometer, are proportional to the amount of agitation energy induced by the injected gas (kinetic and potential energy). Regarding the increment in the vibrations, the inclination angle of the lance showed that the mixing times have a significant effect on the mixing time of the liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. LABVIEW is a trademark of National Instruments, Austin, TX.

  2. HIQ is a trademark of National Instruments, Austin, TX.

  3. MINITAB is a trademark of Minitab, LLC, State College, PA.

  4. SYSTAT is a trademark of Systat Software, San Jose, CA.

  5. NEUROSHELL 2 is a trademark of Ward Systems Group, Inc., Frederick, MD.

Abbreviations

A :

Lance transversal area

D :

Lance diameter

E c :

Kinetic energy

E p :

Potential energy

E T :

Agitation energy

F :

Injected airflow

G :

Tilt angle

G 1 :

Oscillation movement

Int:

Integral absolute value of the vibration signal

Int1 :

Integral value of the signal

P :

Lance radial position

P a :

Atmospheric pressure

P mg :

Molecular weight of the gas injected

Q g :

Surface flow of the injected air

R :

Gas constant

T g :

Gas temperature at the exit of the nozzle

T m :

Metal temperature

V :

Water volume to agitate

V 1 :

Agitation volume

W m :

Metal weight

Z 1 :

Lance depth

g :

Acceleration due to gravity

r :

lance radio

ρ m :

Metal density

References

  1. R.K. Singh, K.K. Keshari, S. Devi, S. Mukhopadhayay, T.K. Pratihar, and A.K. Ray: Mater. Manuf. Processes, 2010, vol. 25, pp. 92–98.

    Article  CAS  Google Scholar 

  2. V.P. Piptyuk, V.F. Polyakov, S.E. Samokhvalov, O.B. Isaev, S.N. Pavlov, and A.A. Travinchev: Metallurgist, 2011, vol. 55, pp. 483–88.

    Article  Google Scholar 

  3. W. Lou and M. Zhu: ISIJ Int., 2015, vol. 55, pp. 961–69.

    Article  CAS  Google Scholar 

  4. H. Lee and K. Yi: Met. Mater. Int., 2015, vol. 21, pp. 511–20.

    Article  Google Scholar 

  5. Y. Wang, S. Yang, J. Li, F. Wang, and Y. Gu: J. Sustain. Metall., 2017, vol. 3, pp. 274–79.

    Article  Google Scholar 

  6. D. Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy, and J.P. Bellot: ISIJ Int., 2012, vol. 52, pp. 1273–80.

    Article  Google Scholar 

  7. D.Q. Geng, H. Lei, and J.C. He: ISIJ Int., 2010, vol. 50, pp. 1597–1605.

    Article  CAS  Google Scholar 

  8. S. Li, X. Gao, T. Chai, and X. Wang: IFAC Proc. Volumes, IFAC, Seoul, 1997, pp. 165–68.

    Google Scholar 

  9. W. Lou and M. Zhu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 3196–212.

    Article  Google Scholar 

  10. Q. Cao, A. Pitts, and L. Nastac: Ironmak. Steelmak., 2018, vol. 45, pp. 280–87.

    Article  CAS  Google Scholar 

  11. W. Lou and M. Zhu: ISIJ Int., 2014, vol. 54, pp. 9–18.

    Article  CAS  Google Scholar 

  12. K. Krishnapisharody and G.A. Irons: ISIJ Int., 2010, vol. 50, pp. 1413–21.

    Article  CAS  Google Scholar 

  13. Y.I. Shishkin, O.A. Grigorova, A.A. Dobromilov, V.V. Gorbunov, and G.V. Kuznetsov: Russ. Metall., 2008, vol. 2008, pp. 674–76, 10.1134/S0036029508080065

    Article  Google Scholar 

  14. P.S. Srinivas, A.K. Kothari, and A. Agrawal: ISIJ Int., 2016, vol. 56, pp. 977–85.

    Article  CAS  Google Scholar 

  15. D. Mazumdar, P. Dhandapani, and R. Sarvanakumar: ISIJ Int., 2017, vol. 57, pp. 286–95.

    Article  CAS  Google Scholar 

  16. L. Zhongqiu, L. Linmin, and L. Baokuan: ISIJ Int., 2017, vol. 55, pp. 1971–79.

    Google Scholar 

  17. A. Alexiadis: Appl. Math. Model., 2007, vol. 31, pp. 1534–47.

    Article  Google Scholar 

  18. S.W.P. Cloete, J.J. Eksteen, and S.M. Bradshaw: Miner. Eng., 2013, vols. 46–47, pp. 16–24.

    Article  Google Scholar 

  19. S. Yu, Z.S. Zou, L. Shao, and S. Louhenkilpi: ISIJ Int., 2016, vol. 56, pp. 1303–05.

    Article  CAS  Google Scholar 

  20. S.P.T. Piva and P.C. Pistorius: Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes, and Salts, Seattle, WA, 2016, pp. 117–25.

  21. H. Tian, Z. Mao, and A. Wang: J. Iron Steel Res. Int., 2009, vol. 16, pp. 1–6.

    Article  CAS  Google Scholar 

  22. K. Mandal and D. Mazumdar: ISIJ Int., 1998, vol. 38, pp. 1150–52.

    Article  CAS  Google Scholar 

  23. V.P. Piptyuk, V.F. Polyakov, S.E. Samokhvalov, A.B. Kovura, A.A. Travinchev, and S.N. Pavlov: Metallurgist, 2009, vol. 53, pp. 679–84.

    Article  CAS  Google Scholar 

  24. X. Wang, M. You, Z. Mao, and P. Yuan: Adv. Eng. Inform., 2016, vol. 30, pp. 368–75.

    Article  CAS  Google Scholar 

  25. F. Liu, R. Zhu, Q. Wang, and R. Bai: ISIJ Int., 2015, vol. 55, pp. 1633–41.

    Article  CAS  Google Scholar 

  26. A. Zimmer, Á.N.C. Lima, R.M. Trommer, S.R. Bragança, and C.P. Bergmann: J. Iron Steel Res. Int., 2008, vol. 15, pp. 11–14.

    Article  CAS  Google Scholar 

  27. M.M. Erofeev and E.B. Agapitov: Russ. Metall., 2009, vol. 2009, pp. 571–75, Doi 10.1134/S0036029509070040.

    Article  Google Scholar 

Download references

Acknowledgment

Two of the authors (IEG and HAG) gratefully acknowledge the support from the Cátedras–CONACYT program through Project No. 674.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Arcos-Gutiérrez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 16, 2019; accepted September 25, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcos-Gutiérrez, H., Aparicio-Fernández, R., Barrera-Cardiel, G. et al. Physical Simulation of a Nonconsumable Lance for Secondary Refining Operations. Metall Mater Trans B 52, 190–198 (2021). https://doi.org/10.1007/s11663-020-01992-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01992-9

Navigation