Skip to main content
Log in

Analysis of Rock Powders by Laser-Induced Breakdown Spectroscopy Combined with the Graphite Doping Method

  • Published:
Journal of Applied Spectroscopy Aims and scope

The analysis of geological samples using laser-induced breakdown spectroscopy (LIBS) is strongly affected by matrix effects. To investigate the improvement of matrix effects by the graphite doping method, rock powder was mixed with graphite powder and pressed into pellets. Four groups of samples with the same graphite content were prepared from a mixture of seven different rock powders and four graphite powders (0, 25, 50, and 75 wt.%). To reduce some of the pulse-to-pulse fluctuations, the internal standardization method was adopted. Four sets of calibration curves of Ca and Mg were prepared using pellet samples with the same graphite content. The influence of graphite content on laser-induced plasma temperature and electron density was further investigated. The coefficients of determination (R2) of the calibration curves after doping graphite are larger than those without doping, and the stability of the spectral intensity, plasma temperature, and electron density after doping are also improved. In particular, when the doping percentage is 50%, the matrix effect is significantly improved. The results show that the graphite doping method has great potential for improving the matrix effects of LIBS in the analysis of rock powder samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Poupeau, F. X. L. Bourdonnec, T. Carter, S. Delerue, M. S. Shackley, J. A. Barrat, S. Dubernet, P. Moretto, T. Calligaro, M. Milić, and K. Kobayashi, J. Archaeol. Sci., 37, No. 11, 2705–2720 (2010).

    Article  Google Scholar 

  2. T. D. T. Oyedotun, Geol., Ecol., Landscapes, 2, No. 2, 148–154 (2018).

    Article  Google Scholar 

  3. X. Chen, G. Yao, J. Cai, Y. Huang, and X. Yuan, J. Nat. Gas Sci. Eng., 48, 145–156 (2017).

    Article  Google Scholar 

  4. J. M. Scott and J. M. Palin, N. Z. J. Geol. Geophys., 51, No. 2, 105–113 (2008).

    Article  Google Scholar 

  5. A. K. Rai, G. S. Maurya, R. Kumar, A. K. Pathak, J. K. Pati, and Aw. K. Rai, J. Appl. Spectrosc., 83, No. 6, 1089–1095 (2017).

    Article  ADS  Google Scholar 

  6. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, Cambridge University Press, New York (2006), pp. 110–111.

    Book  Google Scholar 

  7. A. Koujelev, V. Mottoros, D. Gratton, and A. Dudelzak, Can. Aeronaut. Space J., 55, No. 2, 97–106 (2009).

    Article  ADS  Google Scholar 

  8. F. C. Alvira, G. M. Bilmes, T. Flores, and L. Ponce, Appl. Spectrosc., 69, No. 10, 1205–1209 (2015).

    Article  ADS  Google Scholar 

  9. S. Awasthi, R. Kumar, and A. K. Rai, J. Appl. Spectrosc., 84, 1–5 (2017).

    Article  Google Scholar 

  10. S. S. Golik, O. A. Bukin, A. A. Il’in, E. B. Sokolova, A. V. Kolesnikov, M. Yu. Babiy, Yu. N. Kul’chin, and A. A. Gal’chenko, J. Appl. Spectrosc., 79, No. 3, 471–476 (2012).

    Article  ADS  Google Scholar 

  11. S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, Appl. Phys. B: Lasers Opt., 98, No. 1, 231–241 (2010).

    Article  ADS  Google Scholar 

  12. S. A. Beldjilali, E. Axente, A. Belasri, and T. Baba-Hamed, J. Appl. Spectrosc., 84, No. 3, 472–477 (2017).

    Article  ADS  Google Scholar 

  13. M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. D. Giacomo, C. Zaccone, M. T. Miano, and O. D. Pascale, J. Environ. Monit., 13, No. 5, 1422–1426 (2011).

    Article  Google Scholar 

  14. P. Singh, E. Mal, A. Khare, and S. Sharma, J. Cult. Herit., 33, 71–82 (2018).

    Article  Google Scholar 

  15. M. Wall, Z. Sun, and Z. T. Alwahabi, Opt. Express, 24, No. 2, 1507 (2016).

    Article  ADS  Google Scholar 

  16. Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, Opt. Express, 22, No. 11, 12909 (2014).

    Article  ADS  Google Scholar 

  17. M. Singh, V. Karki, and A. Sarkar, J. Appl. Spectrosc., 83, No. 3, 497–503 (2016).

    Article  ADS  Google Scholar 

  18. D. Andrade, M. Sperança, and E. R. Pereirafilho, Anal. Methods, 9, No. 35, 5156 (2017).

    Article  Google Scholar 

  19. R. J. Lasheras, J. Anzano, C. Bellogálvez, M. Escudero, and J. O. Caceres, Anal. Lett., 50, No. 8, 1325–1334 (2016).

    Article  Google Scholar 

  20. Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, and Y. Lu, J. Anal. At. Spectrom., 33, No. 2, 205 (2017).

    Article  Google Scholar 

  21. A. A. I. Khalil, M. A. Morsy, and H. Z. Eldeen, Opt. Laser Technol., 96, 227–237 (2017).

    Article  ADS  Google Scholar 

  22. S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, Appl. Phys. B: Lasers Opt., 98, No. 1, 231–241 (2010).

    Article  ADS  Google Scholar 

  23. H. Griem, Plasma Spectroscopy, McGraw-Hill, New York (1964), pp. 320–357.

    Google Scholar 

  24. T. Fujimoto and R. W. Mcwhirter, Phys. Rev. A, 42, No. 11, 6588–6591 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhirong.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 5, p. 847, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiа, J.J., Hongbo, F., Huadong, W. et al. Analysis of Rock Powders by Laser-Induced Breakdown Spectroscopy Combined with the Graphite Doping Method. J Appl Spectrosc 87, 919–924 (2020). https://doi.org/10.1007/s10812-020-01089-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01089-w

Keywords

Navigation