Skip to main content
Log in

Determination of Lorazepam in Drug Formulation and Biofluids Using a Spectrophotometric Method and Response Surface Methodology

  • Published:
Journal of Applied Spectroscopy Aims and scope

A novel, simple, sensitive, and selective kinetic spectrophotometric method has been developed for the determination of lorazepam in pharmaceutical and bioloical samples. The procedure is based on the catalytic effect of lorazepam on the Janus Green–bromate reaction system. The change in absorbance was followed spectrophotometrically at 618 nm. To obtain the maximum sensitivity, the reagents concentration, temperature, and time were optimized by one at the time method. Under optimum experimental conditions, the calibration curve was linear over the range 0.3–19.5 μg/mL of lorazepam, including two linear segments. The relative standard deviations (n = 5) for 1.0, 5.0, and 15.0 μmol/L of lorazepam were 1.09, 1.03, and 0.97%, respectively. The limit of detection was 0.08 μg/mL of lorazepam. An experimental check under these optimal conditions confirmed good agreement in the RSM results. The developed method was successfully applied for the determination of lorazepam in real samples, and the obtained results are in a good agreement with those using HPLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Omar, K. M. B. El-Din, H. Salem, and O. H. Abdelmageed, Spectrochim. Acta, 193, 310–317 (2018).

    Article  Google Scholar 

  2. M. R. Shishehbore, A. Sheibani, and A. Haghdost, Spectrochim. Acta, 81, 304–307 (2011).

    Article  Google Scholar 

  3. M. R. Shishehbore, A. Sheibani, and E. Mirparizi, Chin. Chem. Lett., 23, 611–614 (2012).

    Article  Google Scholar 

  4. M. L. Sullivan and N. D. Bonawitz, Plant Sci., 269, 148–152 (2018).

    Article  Google Scholar 

  5. M. R. Shishehbore and Z. Aghamiri, Iran. J. Pharm. Res., 13, 373–379 (2014).

    Google Scholar 

  6. M. Bahram, S. Mojarrad, and M. Moghtader, J. Iran. Chem. Soc., 15, 779–786 (2018).

    Article  Google Scholar 

  7. G. Schoetz, O. Trapp, and V. Schurig, Anal. Chem., 72, 2758–2764 (2000).

    Article  Google Scholar 

  8. Z. Es'Haghi, L. Daneshvar, P. Salari, and S. Bandegi, Chemija, 20, 181–186 (2009).

    Google Scholar 

  9. E. Konoz, A. H. M. Sarrafi , M. Samadizadeh, and S. Boreiri, J. Chem., 9, 2232–2238 (2012).

    Google Scholar 

  10. B. Rezaei, O. Rahmanian, and A. A. Ensafi, Microchim. Acta, 180, 33–39 (2013).

    Article  Google Scholar 

  11. S. N. Muchohi, K. Obiero, G. O. Kokwaro, B. R. Ogutu, I. M. Githiga, G. Edwards, and C. R. Newton, J. Chromatogr. B, 824, 333–340 (2005).

    Article  Google Scholar 

  12. M. E. Abdel-Hamid and D. Sharma, J. Liq. Chrom. Relat. Tech., 27, 641–660 (2004).

    Article  Google Scholar 

  13. J. A. Yahwak, R. R. Riker, G. L. Fraser, and S. Subak-Sharpe, Pharmacotherapy, 28, 984–991 (2008).

    Article  Google Scholar 

  14. J. Ghasemi, A. Niazi, and R. Ghorbani, Anal. Lett., 39, 1159–1169 (2006).

    Article  Google Scholar 

  15. H. Zhu and J. Luo, J. Pharm. Biomed. Anal., 39, 268–274 (2005).

    Article  MathSciNet  Google Scholar 

  16. B. Rezaei, M. K. Boroujeni, and A. A. Ensafi, Electrochim. Acta, 123, 332–339 (2014).

    Article  Google Scholar 

  17. D. Orlovic, D. Radulovic, D. Ivanovic, and Z. Vujic, Chromatographia, 52, 732–734 (2000).

    Article  Google Scholar 

  18. M. Jug and M. Bećirević-Laćan, Drug Dev. Ind. Pharm., 34, 817–826 (2008).

    Article  Google Scholar 

  19. C. Pham-Huy, G. Villain-Pautet, H. Hua, N. Chikhi-Chorfi , H. Galons, M. Thevenin, and J. M. Warnet, J. Biochem. Biophys. Methods, 54, 287–299 (2002).

    Article  Google Scholar 

  20. L. V. Panlilio, E. B. Thorndike, and C. W. Schindler, Psychopharmacology, 179, 374–382 (2005).

    Article  Google Scholar 

  21. G. V. Popović, D. M. Sladić, V. M. Stefanović, and L. B. Pfendt, J. Pharm. Biomed. Anal., 31, 693–699 (2003).

    Article  Google Scholar 

  22. O. Quintela, A. Cruz, A. De Castro, M. Concheiro, and M. Lopez-Rivadulla, J. Chromatogr. B, 825, 63–71 (2005).

    Article  Google Scholar 

  23. M. Jamal and H. Hadi, Egypt. J. Basic Appl. Sci., 5, 151–156 (2018).

    Google Scholar 

  24. J. Ghasemi and A. Niazi, Anal. Chim. Acta, 533, 169–177 (2005).

    Article  Google Scholar 

  25. R. Raviadaran, D. Chandran, L. H. Shin, and S. Manickam, LWT, 96, 58–65 (2018).

    Article  Google Scholar 

  26. H. Sharifi, S. M. Zabihzadeh, and M. Ghorbani, Carbohydr. Polym., 194, 384–394 (2018).

    Article  Google Scholar 

  27. J. Milano, H. C. Ong, H. H. Masjuki, A. S. Silitonga, W. H. Chen, F. Kusumo, and A. H. Sebayang, Energy Convers. Manage., 158, 400–415 (2018).

    Article  Google Scholar 

  28. R. Qadir, F. Anwar, F. Batool, M. Mushtaq, and A. Jabbar, J. Food Meas. Charact., 13, 697–706 (2019).

    Article  Google Scholar 

  29. M. H. Esfe, M. Firouzi, H. Rostamian, and M. Afrand, J. Mol. Liq., 261, 14–20 (2018).

    Article  Google Scholar 

  30. A. Arslan, E. Topkaya, D. Bingöl, and S. Veli, Sustain. Environ. Res., 28, 65–71 (2018).

    Article  Google Scholar 

  31. S. Chen, Z. Zeng, N. Hu, B. Bai, and H. Wang, Y. Suo, Food Chem., 242, 1–8 (2018).

    Article  Google Scholar 

  32. N. S. Sulaiman, R. Hashim, M. H. M. Amini, M. Danish, and O. Sulaiman, J. Clean. Prod., 198, 1422–1430 (2018).

    Article  Google Scholar 

  33. R. H. Myers and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, second ed., John Wiley & Sons, USA (2002).

  34. D. C. Montgomery, Design and Analysis of Experiments, fourth edn., John Wiley & Sons, USA (1996).

  35. M. R. Shishehbore and R. Jokar, Anal. Methods, 3, 2815–2821 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Shishehbor.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 5, p. 854, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanpoor, S., Shishehbor, M.R., Sheibani, A. et al. Determination of Lorazepam in Drug Formulation and Biofluids Using a Spectrophotometric Method and Response Surface Methodology. J Appl Spectrosc 87, 965–975 (2020). https://doi.org/10.1007/s10812-020-01096-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01096-x

Keywords

Navigation