Skip to main content
Log in

Intercalibration of Satellite and Ground-Based Measurements of CO2 Content at the NDACC St. Petersburg Station

  • Published:
Journal of Applied Spectroscopy Aims and scope

Ground-based (Bruker 125 HR) and satellite (OCO-2) datasets of simultaneous CO2 measurements in the vicinity of St. Petersburg were compared. Correction of the ground-based XCO2 values by 2.5% and the choice of the optimal setup during spectral analysis allowed good agreement to be reached between the satellite and groundbased measurements. The bias between the two datasets was –0.01–0.16 ppm (–0.00–0.04%), standard deviations of the means, 1.42–1.49 ppm (0.35–0.37%), with a spatial mismatch of the XCO2 data pairs of 100–300 km. Such small disagreement between the two types of measurements permits both methods to be used to solve the inverse problem of atmospheric transfer, i.e., estimation of anthropogenic emissions of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, Intergovernmental Panel on Climate Change (2013): https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf.

  2. National Institute for Environmental Studies report. A guidebook on the use of satellite greenhouse gases observation data to evaluate and improve greenhouse gas emission inventories (2018): https://www.nies.go.jp/soc/doc/GHG_Satellite_Guidebook_1st_12d.pdf.

  3. Committee on Earth Observing Satellites (CEOS) report. A constellation architecture for monitoring carbon dioxide and methane from space (2018): http://ceos.org/document_management/Virtual_Constellations/ACC/Documents/CEOS_AC-VC_GHG_White_Paper_Version_1_20181009.pdf.

  4. H. Bovensmann, M. Buchwitz, J. P. Burrows, M. Reuter, T. Krings, K. Gerilowski, O. Schneising, J. Heymann, A. Tretner, and J. Erzinger, Atmos. Meas. Tech., 3, No. 4, 781–811 (2010).

    Article  Google Scholar 

  5. P. Fu, Y. Xie, C. E. Moore, S. W. Myint, and C. J. Bernacchi, Earth's Future, 7, No. 9, 1058–1070 (2019).

    Article  ADS  Google Scholar 

  6. D. Wunch, P. O. Wennberg, G. Osterman, B. Fisher, B. Naylor, C. M. Roehl, C. O'Dell, L. Mandrake, C. Viatte, D. W. Griffith, N. M. Deutscher, V. A. Velazco, J. Notholt, T. Warneke, C. Petri, M. de Maziere, M. K. Sha, R. Sussmann, M. Rettinger, D. Pollard, J. Robinson, I. Morino, O. Uchino, F. Hase, T. Blumenstock, M. Kiel, D. G. Feist, S. G. Arnold, K. Strong, J. Mendonca, R. Kivi, P. Heikkinen, L. Iraci, J. Podolske, P. W. Hillyard, S. Kawakami, M. K. Dubey, H. A. Parker, E. Sepulveda, O. E. G. Rodriguez, Y. Te, P. Jeseck, M. R. Gunson, D. Crisp, and A. Eldering, Atmos. Meas. Tech., 10, No. 6, 2209–2238 (2017).

    Article  Google Scholar 

  7. Observing Network TCCON: https://tccon-wiki.caltech.edu/.

  8. Observing Network IRWG/NDACC: https://www2.acom.ucar.edu/irwg.

  9. S. Barthlott, M. Schneider, F. Hase, A. Wiegele, E. Christner, Y. Gonzalez, T. Blumenstock, S. Dohe, O. E. Garcia, E. Sepulveda, K. Strong, J. Mendonca, D. Weaver, M. Palm, N. M. Deutscher, T. Warneke, J. Notholt, B. Lejeune, E. Mahieu, N. Jones, D. W. T. Griffith, V. A. Velazco, D. Smale, J. Robinson, R. Kivi, P. Heikkinen, and U. Raffalski, Atmos. Meas. Tech., 8, No. 3, 1555–1573 (2015).

    Article  Google Scholar 

  10. Yu. M. Timofeev, I. A. Berezin, Ya. A. Virolainen, M. V. Makarova, A. V. Polyakov, A. V. Poberovskii, N. N. Filippov, and S. Ch. Foka, Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 55, No. 1, 65–72 (2019) [Yu. M. Timofeyev, I. A. Berezin, Ya. A. Virolainen, M. V. Makarova, A. V. Polyakov, A. V. Poberovsky, and S. Ch. Foka, Izv. Atmos. Oceanic Phys., 55, No. 1, 59–64 (2019)].

  11. Y. Timofeyev, Y. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, J. Mol. Spectrosc., 323, 2–14 (2016).

    Article  ADS  Google Scholar 

  12. F. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Hopfner, N. B. Jones, C. P. Rinsland, and S. W. Wood, J. Quant. Spectrosc. Radiat. Transfer, 87, 25–52 (2004).

    Article  ADS  Google Scholar 

  13. Ya. A. Virolainen, Zh. Prikl. Spektrosk., 85, No. 3, 453–460 (2018) [Ya. A. Virolainen, J. Appl. Spectrosc., 85, No. 3, 462–469 (2018)].

  14. OCO-2 Database on CO2; https://co2.jpl.nasa.gov/download/?dataseet=OCO2LtCO2v9&product=LITE.

  15. Orbiting Carbon Observatory-2 (OCO-2) Data Product User's Guide; https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_DUG.V9.pdf.

  16. G. M. Nerobelov, Yu. M. Timofeev, S. P. Smyshlyaev, Ya. A. Virolainen, M. V. Makarova, and S. Ch. Foka, Opt. Atmos. Okeana, 33, No. 10 (2020) (in press).

  17. M. V. Makarova, A. V. Poberovskii, F. Hase, Yu. Timofeyev, and Kh. Kh. Imhasin, J. Appl. Spectrosc., 83, No. 3, 429–436 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Virolainen.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 5, pp. 816–820, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virolainen, Y.A., Nikitenko, A.A. & Timofeyev, Y.M. Intercalibration of Satellite and Ground-Based Measurements of CO2 Content at the NDACC St. Petersburg Station. J Appl Spectrosc 87, 888–892 (2020). https://doi.org/10.1007/s10812-020-01085-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01085-0

Keywords

Navigation