Skip to main content
Log in

Influence of Unbalanced Electromagnetic Force and Air Supply Pressure Fluctuation in Air Bearing Spindles on Machining Surface Topography

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Air bearing spindles (ABS) can meet high accuracy demands for the precise rotation motion, which adopt air bearings to support spindle shaft, and the spindle shaft directly connects the motor rotor. The unbalanced electromagnetic force caused by motor rotor eccentricity (MRE) and air pressure fluctuation (APF) are two important influential factors to the dynamic performance of the spindle system and machining surface quality. This paper addresses the problems of measuring the MRE and APF in an ABS through testing machining surface topography. A permanent magnet synchronous motor (PMSM) was modelled by finite element simulation (FES). Through FES it found that the MRE between the motor rotor and stator hole produced a radial magnetic force (RMF), which could cause ABS to periodically vibrate in the axial direction. Besides, the change of the air supply caused the stiffness variation of ABS and result in the tilt error motions of the spindle shaft. A theoretical model of machining surface topography considering MRE and APF was then proposed for the first time, which revealed that the MRE and APF resulted in the periodic fluctuations of the machining surface topography. The overall surface topography then became grooved surfaces. The above findings were finally validated by measurement results of ultraprecision diamond turning experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

ABS:

Air bearing spindles

PMSM:

Permanent magnet synchronous motor

MRE:

Motor rotor eccentricity

RMF:

Radial magnetic force

APF:

Air pressure variation

FES:

Finite element simulation

M :

Centroid

n :

Rotational speed

t :

Turning time

f :

Feed rate

ω :

The vibration frequency

∆L :

Amplitude of the vibration

k :

Coefficient

P s :

Air supply pressure

P a :

Atmospheric pressure, 0.1 MPa

T :

Temperature

d 1 :

Orifice diameter

h 2 :

Air gap

Q 1 :

Flow rate

V :

Volume

References

  1. Uriarte, L., Herrero, A., Zatarain, M., Santiso, G., Lacalle, L. N., Lamikiz, A., & Albizuri, J. (2007). Error budget and stiffness chain assessment in a micromilling machine equipped with tools less than 0.3 mm in diameter. Precision Engineering, 31(1), 1–12.

    Article  Google Scholar 

  2. Zhang, S. J., & To, S. (2016). Spindle vibration influencing form error in ultraprecision diamond machining. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 231(17), 1989–1996.

    Google Scholar 

  3. Kolar, P., Sulitka, M., & Janota, M. (2011). Simulation of dynamic properties of a spindle and tool system coupled with a machine tool frame. International Journal of Advanced Manufacturing Technology, 54(1), 11–20.

    Article  Google Scholar 

  4. Sung, S. J., Jang, G. H., Jang, J. W., & Lee, H. L. (2013). Vibration and noise in a HDD spindle motor arising from the axial UMF ripple. IEEE Transactions on Magnetics, 49(6), 2489–2494.

    Article  Google Scholar 

  5. Kim, D. J., Kim, H. J., Hong, J. P., & Park, C. J. (2014). Estimation of acoustic noise and vibration in an induction machine considering rotor eccentricity. IEEE Transactions on Magnetics, 50(50), 857–860.

    Article  Google Scholar 

  6. Xu, X. B., Liu, J. H., & Chen, S. (2019). Internal model control for reduction of bias and harmonic currents in hybrid magnetic bearing. Mechanical Systems and Signal Processing, 115, 70–81.

    Article  Google Scholar 

  7. Fu, L., Zuo, S. G., Deng, W. Z., & Wu, S. L. (2016). Modeling and analysis of electromagnetic force, vibration, and noise in permanent-magnet synchronous motor considering current harmonics. IEEE Transactions on Industrial Electronics, 63(12), 7455–7466.

    Article  Google Scholar 

  8. Mystkowski, A., Kierdelewicz, A., Jastrzebski, R. P., Dragasius, E., & Eidukynas, D. (2018). Flux measurement and conditioning system for heteropolar active magnetic bearing using Kapton-foil Hall sensors. Mechanical Systems and Signal Processing, 115, 394–404.

    Article  Google Scholar 

  9. Kim, J. Y., Sung, S. J., & Jang, G. H. (2012). Characterization and experimental verification of the axial unbalanced magnetic force in brushless DC motors. IEEE Transactions on Magnetics, 48(11), 3001–3004.

    Article  Google Scholar 

  10. Li, Y., Lu, Q., Zhu, Z. Q., Wu, L. J., Li, G. J., & Wu, D. (2015). Analytical synthesis of air-gap field distribution in permanent magnet machines with rotor eccentricity by superposition method. IEEE Transactions on Magnetics, 51(11), 1–4.

    Google Scholar 

  11. Li, J., & Cho, Y. (2010). Dynamic reduction of unbalanced magnetic force and vibration in switched reluctance motor by the parallel paths in windings. Mathematics and Computers in Simulation, 81(2), 407–419.

    Article  MathSciNet  Google Scholar 

  12. Wu, Q. H., Sun, Y. Z., Chen, W. Q., Chen, G. D., Bai, Q. S., & Zhang, Q. C. (2018). Effect of motor rotor eccentricity on aerostatic spindle vibration in machining processes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(7), 1331–1342.

    Google Scholar 

  13. Zhang, S. J., To, S., Cheung, C. F., & Wang, H. T. (2012). Dynamic characteristics of an aerostatic bearing spindle and its influence on surface topography in ultra-precision diamond turning. International Journal of Machine Tools and Manufacture, 62(1), 1–12.

    Article  Google Scholar 

  14. Chen, W. Q., Liang, Y. C., Sun, Y. Z., Bai, Q. S., & An, C. H. (2014). A novel dynamic modeling method for aerostatic spindle based on pressure distribution. Journal of Vibration and Control, 21(16), 3339–3347.

    Article  MathSciNet  Google Scholar 

  15. Liang, Y. C., Chen, W. Q., Bai, Q. S., Sun, Y. Z., Chen, G. D., Zhang, Q., & Sun, Y. (2013). Design and dynamic optimization of an ultraprecision diamond flycutting machine tool for large KDP crystal machining. International Journal of Advanced Manufacturing Technology, 69(1–4), 237–244.

    Article  Google Scholar 

  16. Chen, G. D., Sun, Y. Z., Zhang, F. H., An, C. H., Chen, W. Q., & Su, H. (2017). Influence of ultra-precision flycutting spindle error on surface frequency domain error formation. International Journal of Advanced Manufacturing Technology, 88(9), 3233–3241.

    Article  Google Scholar 

  17. Chen, G. D., Sun, Y. Z., An, C. H., Zhang, F. H., Sun, Z. J., & Chen, W. Q. (2016). Measurement and analysis for frequency domain error of ultra-precision spindle in a flycutting machine tool. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. https://doi.org/10.1177/0954405416673102.

  18. Xi, S. T., Cao, H. R., & Chen, X. F. (2019). Dynamic modeling of spindle bearing system and vibration response investigation. Mechanical Systems and Signal Processing, 114, 486–511.

    Article  Google Scholar 

  19. Nakao, Y., Suzuki, K., Yamada, K., & Nagasaka, K. (2014). Feasibility study on design of spindle supported by high-stiffness water hydrostatic thrust bearing. International Journal of Automation Technology, 8, 530–538.

    Article  Google Scholar 

  20. Chen, W. Q., Liang, Y. C., Sun, Y. Z., An, C. H., & Chen, G. D. (2014). Investigation of the influence of constant pressure oil source fluctuations on ultra-precision machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(2), 372–376.

    Article  Google Scholar 

  21. Khanfir, H., Bonis, M., & Revel, P. (2005). Improving waviness in ultra precision turning by optimizing the dynamic behavior of a spindle with magnetic bearings. International Journal of Machine Tools and Manufacture, 45(7), 841–848.

    Article  Google Scholar 

  22. Feng, H. H., Xu, C. D., & Wan, J. (2014). Mathematical model and analysis of the water-lubricated hydrostatic journal bearings considering the translational and tilting motions. Mathematical Problems in Engineering, 2014, 353769.

    Google Scholar 

  23. Liu, J., & Chen, X. (2014). Dynamic design for motorized spindles based on an integrated model. International Journal of Advanced Manufacturing Technology, 71(9), 1961–1974.

    Article  Google Scholar 

  24. Zhang, S., Li, Z., Xiong, Z. W., & Suet, T. (2019). A theoretical and experimental study of forced spindle vibration under unbalanced magnetic forces in ultra-precision machining. The International Journal of Advanced Manufacturing Technology, 103(9–12), 4689–4694.

    Article  Google Scholar 

  25. He, C., & Zong, W. J. (2019). Influencing factors and theoretical models for the surface topography in diamond turning process: A review. Micromachines, 10(5), 288.

    Article  Google Scholar 

  26. Ning, J., & Liang, S. (2019). Predictive modeling of machining temperatures with force–temperature correlation using cutting mechanics and constitutive relation. Materials, 12(2), 284.

    Article  Google Scholar 

  27. Ning, J., Nguyen, V., Huang, Y., Hartwig, K., Liang, S. (2019). Constitutive modeling of ultra-fine-grained titanium flow stress for machining temperature prediction. Bio-Design and Manufacturing, 2, 153–160.

    Article  Google Scholar 

  28. Ning, J., Nguyen, V., & Liang, S. Y. (2019). Analytical modeling of machining forces of ultra-fine-grained titanium. The International Journal of Advanced Manufacturing Technology, 101, 627–636.

    Article  Google Scholar 

  29. Valavi, M., Nysveen, A., Nilssen, R., Lorenz, R., & Rølvåg, T. (2014). Influence of pole and slot combinations on magnetic forces and vibration in low-speed PM wind generators. IEEE Transactions on Magnetics, 50(5), 1–11.

    Article  Google Scholar 

  30. Chen, X., Yuan, S. H., & Peng, Z. X. (2015). Nonlinear vibration for PMSM used in HEV considering mechanical and magnetic coupling effects. Nonlinear Dynamics, 80(1–2), 541–552.

    Article  Google Scholar 

  31. Wang, Y. (1999). Gas lubricated theory and design manual of gas bearings (pp. 154–167). Beijing: Machinery Industry Press.

    Google Scholar 

  32. Wu, Q. H., Sun, Y. Z., Chen, W. Q., Wang, Q., & Chen, G. D. (2019). Theoretical prediction and experimental verification of the unbalanced magnetic force in air bearing motor spindles. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(3), 2330–2344.

    Article  Google Scholar 

  33. Wu, Q. H., Sun, Y. Z., Chen, W. Q., Liu, H. T., & Luo, X. C. (2019). An mechatronics coupling design approach for aerostatic bearing spindles. International Journal Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-019-00098-w.

Download references

Acknowledgements

The authors gratefully acknowledge financial support of the International Science & Technology Cooperation Program of China (No. 2015DFA70630), the National Natural Science Foundation of China (Grant Nos. 51505107 and 51705462), and Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ20E050021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanhui Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wu, Q., Chen, W. et al. Influence of Unbalanced Electromagnetic Force and Air Supply Pressure Fluctuation in Air Bearing Spindles on Machining Surface Topography. Int. J. Precis. Eng. Manuf. 22, 1–12 (2021). https://doi.org/10.1007/s12541-020-00428-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00428-3

Keywords

Navigation