Skip to main content
Log in

Sampling Almost Periodic and Related Functions

  • Published:
Constructive Approximation Aims and scope

Abstract

We consider certain finite sets of circle-valued functions defined on intervals of real numbers and estimate how large the intervals must be for the values of these functions to be uniformly distributed in an approximate way. This is used to establish some general conditions under which a random construction introduced by Katznelson for the integers yields sets that are dense in the Bohr group. We obtain in this way very sparse sets of real numbers (and of integers) on which two different almost periodic functions cannot agree, which makes them amenable to be used in sampling theorems for these functions. These sets can be made as sparse as to have zero asymptotic density or as to be t-sets, i.e., to be sets that intersect any of their translates in a bounded set. Many of these results are proved not only for almost periodic functions but also for classes of functions generated by more general complex exponential functions, including chirps or polynomial phase functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blum, J.R., Eisenberg, B., Hahn, L.-S.: Ergodic theory and the measure of sets in the Bohr group. Acta Sci. Math. (Szeged) 34, 17–24 (1973)

    MathSciNet  MATH  Google Scholar 

  2. Bohr, H.: Zur Theorie der fastperiodischen Funktionen I. Acta Math. 45, 29–127 (1924)

    Article  Google Scholar 

  3. Bohr, H.: Zur Theorie der fastperiodischen Funktionen II. Acta Math. 46, 101–214 (1925)

    Article  MathSciNet  Google Scholar 

  4. Bohr, H.: Zur Theorie der fastperiodischen Funktionen III. Acta Math. 47, 237–281 (1926)

    Article  MathSciNet  Google Scholar 

  5. Bohr, H.: Almost Periodic Functions. Chelsea Publishing Company, New York (1947)

    MATH  Google Scholar 

  6. Carlen, E., Mendes, R.V.: Signal reconstruction by random sampling in chirp space. Nonlinear Dyn. 56(3), 223–229 (2009)

    Article  MathSciNet  Google Scholar 

  7. Collet, P.: Sampling almost-periodic functions with random probes of finite density. Proc. R. Soc. Lond. Ser. A 452(1953), 2263–2277 (1996)

    Article  MathSciNet  Google Scholar 

  8. Drmota, M., Tichy, R.F.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics, vol. 1651. Springer, Berlin (1997)

    Book  Google Scholar 

  9. Filali, M., Galindo, J.: Approximable \(\mathscr {{WAP}}\)- and \(\mathscr {LUC}\)-interpolation sets. Adv. Math. 233, 87–114 (2013)

    Article  MathSciNet  Google Scholar 

  10. Graham, C.C., Hare, K.E.: Interpolation and Sidon Sets for Compact Groups. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2013)

    Book  Google Scholar 

  11. Kahane, J.P., Katznelson, Y.: Distribution uniforme de certaines suites d’entiers aléatoires dans le groupe de Bohr. J. Anal. Math. 105, 379–382 (2008)

    Article  MathSciNet  Google Scholar 

  12. Katznelson, Y.: An Introduction to Harmonic Analysis, corrected edn. Dover Publications Inc., New York (1976)

    MATH  Google Scholar 

  13. Katznelson, Y.: Sequences of integers dense in the Bohr group. Proc. R. Inst. Tech. 79–86 (1973)

  14. Li, D., Queffélec, H., Rodríguez-Piazza, L.: Some new thin sets of integers in harmonic analysis. J. Anal. Math. 86, 105–138 (2002)

    Article  MathSciNet  Google Scholar 

  15. López, J.M., Ross, K.A.: Sidon sets. In: Lecture Notes in Pure and Applied Mathematics, vol. 13. Marcel Dekker Inc., New York (1975)

  16. Neuwirth, S.: Two random constructions inside lacunary sets. Ann. Inst. Fourier (Grenoble) 49(6), 1853–1867 (1999)

    Article  MathSciNet  Google Scholar 

  17. Rudin, W.: Weak almost periodic functions and Fourier–Stieltjes transforms. Duke Math. J. 26, 215–220 (1959)

    Article  MathSciNet  Google Scholar 

  18. Rudin, W.: Fourier Analysis on Groups. Wiley, New York. Reprint of the 1962 original, A Wiley-Interscience Publication (1990)

  19. Segal, I.E.: The class of functions which are absolutely convergent Fourier transforms. Acta Sci. Math. Szeged 12, no, pp. 157–161. Leopoldo Fejér et Frederico Riesz LXX annos natis dedicatus, Pars B (1950)

Download references

Acknowledgements

We would like to thank the anonymous referees for the appreciable number of corrections and improvements they suggested. We truly believe their input has resulted in a better paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Galindo.

Additional information

Communicated by Stephane Jaffard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of Stefano Ferri was supported by the Faculty of Sciences of Universidad de los Andes via the Proyecto Semilla: “Representabilidad de grupos topológicos y de Álgebras de Banach y aplicaciones.” Research of Jorge Galindo was author supported by Ministerio de Economía y Competitividad (Spain) through Project MTM2016-77143-P (AEI/FEDER, UE).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferri, S., Galindo, J. & Gómez, C. Sampling Almost Periodic and Related Functions. Constr Approx 52, 213–232 (2020). https://doi.org/10.1007/s00365-019-09479-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-019-09479-w

Keywords

Mathematics Subject Classification

Navigation