Skip to main content
Log in

Predicted and measured hydraulic conductivity of sand-sized crushed limestone

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The hydraulic conductivity of 54 sand-sized crushed limestone materials was measured by conducting constant head tests in a rigid-wall permeameter and was estimated using six predictive equations requiring easily obtainable parameters. The gradations tested had effective grain size, D10, from 0.079 to 2.15 mm; uniformity coefficient, Cu, from 1.19 to 15.79; and void ratio, e, from 0.42 to 0.76. The measured hydraulic conductivity had a range of about three orders of magnitude (3.4*10−3 to 3.3 cm/s). Four of the predictive equations, based on the square of the effective grain size, D102, yielded closely grouped results differing by not more than a factor of 2. Long existing equations by Terzaghi (1925) and by Hazen (1892), adjusted for void ratio according to Taylor (1948), were found to have a high predictive efficiency with a ratio of predicted to measured values between 1/2 and 2 for 70% of the materials tested. The Kenney et al. (1984) equation, based on D52, was also efficient but underestimated measured values for 63% of all cases. The Kozeny–Carman equation (Taylor 1948; Chapuis 2012), based on specific surface, overestimated measurements for 90% of the tested materials by a factor of up to 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All necessary data are provided in the manuscript.

References

  • Alyamani MS, Şen Z (1993) Determination of hydraulic conductivity from complete grain-size distribution curves. Ground Water 31(4):551–555. https://doi.org/10.1111/j.1745-6584.1993.tb00587.x

    Article  Google Scholar 

  • Arya LM, Leij FJ, Shouse PJ, van Genuchten MT (1999) Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci Soc Am J 63:1063–1070

    Article  Google Scholar 

  • ASTM (2014) Standard D854-standard test methods for specific gravity of soil solids by water pycnometer. In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PA

  • ASTM (2016a) Standard D4254-standard test methods for minimum index density and unit weight of soils and calculation of relative density. In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PA

  • ASTM (2016b) Standard D4253-standard test methods for maximum index density and unit weight of soils using a vibratory table. In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PA

  • ASTM (2017) Standard E11-standard specification for woven wire test sieve cloth and test sieves. In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PA

  • ASTM (2019) Standard D2434-standard test methods for permeability of granular soils (constant head). In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PA

  • Aubertin M, Bussière B, Chapuis RP (1996) Hydraulic conductivity of homogenized tailings from hard rock mines. Can Geotech J 33(3):470–482. https://doi.org/10.1139/t96-068

    Article  Google Scholar 

  • Boadu FK (2000) Hydraulic conductivity of soils from grain-size distribution: new models. J Geotech Geoenviron Eng 126(8):739–746

    Article  Google Scholar 

  • Cabalar AF, Akbulut N (2016a) Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape. SpringerPlus. https://doi.org/10.1186/s40064-016-2472-2

  • Cabalar AF, Akbulut N (2016b) Effects of the particle shape and size of sands on the hydraulic conductivity. Acta Geotechnica Slov 13(2):83–93

    Google Scholar 

  • Carrier WD III (2003) Goodbye, Hazen; hello, Kozeny-Carman. J Geotech Geoenviron Eng 129(11):1054–1056

    Article  Google Scholar 

  • CEN (2004) Standard EN ISO 17892-11-geotechnical investigation and testing-laboratory testing of soil-part 11: determination of permeability by constant and falling head. European Committee for Standardization, Brussels, Belgium

  • Chapuis RP (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41(5):787–795. https://doi.org/10.1139/t04-022

    Article  Google Scholar 

  • Chapuis RP (2012) Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ 71:401–434. https://doi.org/10.1007/s10064-012-0418-7

    Article  Google Scholar 

  • Chapuis RP, Aubertin M (2003) On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Can Geotech J 40(3):616–628. https://doi.org/10.1139/t03-013

    Article  Google Scholar 

  • Chapuis RP, Légaré PP (1992) A simple method for determining the surface area of fine aggregates and fillers in bituminous mixtures. In: Effects of aggregates and mineral fillers on asphalt mixture performance. ASTM STP 1147:177–186. https://doi.org/10.1520/STP24217S

    Article  Google Scholar 

  • Chapuis RP, Baass K, Davenne L (1989) Granular soils in rigid-wall permeameters: method for determining the degree of saturation. Can Geotech J 26(1):71–79. https://doi.org/10.1139/t89-008

    Article  Google Scholar 

  • Chapuis RP, Gatien T, Marron J-C (2019) How to improve the quality of laboratory permeability tests in rigid-wall permeameters: a review. Geotech Test J. https://doi.org/10.1520/GTJ20180350

  • Chapuis RP, Weber S, Duhaime F (2015) Permeability test results with packed spheres and non-plastic soils. Geotech Test J 38(6):950–964. https://doi.org/10.1520/GTJ20140124

    Article  Google Scholar 

  • Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris

  • Dolźyk K, Chmielewska I (2014) Predicting the coefficient of permeability of non-plastic soils. Soil Mech Found Eng 51(5):213–218. https://doi.org/10.1007/s11204-014-9279-3

    Article  Google Scholar 

  • Fair GM, Hatch LP (1933) Fundamental factors governing the stream-line flow of water through sand. J Am Water Works Assoc 25(11):1551–1156

    Article  Google Scholar 

  • Feng S, Vardanega PJ, Ibraim E, Widyatmoko I, Ojum C (2019) Permeability assessment of some granular mixtures. Géotechnique 69(7):646–654. https://doi.org/10.1680/jgeot.17.T.039

    Article  Google Scholar 

  • Ganjidoost H, Mousavi SJ, Soroush A (2016) Adaptive network-based fuzzy inference systems coupled with genetic algorithms for predicting soil permeability coefficient. Neural Process Lett 44:53–79. https://doi.org/10.1007/s11063-015-9479-5

    Article  Google Scholar 

  • Ghabchi R, Zaman M, Khoury N, Kazmee H, Solanki P (2013) Effect of gradation and source properties on stability and drainability of aggregate bases: a laboratory and field study. Inter J Pavement Eng 14(3):274–290. https://doi.org/10.1080/10298436.2012.711475

    Article  Google Scholar 

  • Haider I, Kaya Z, Cetin A, Hatipoglu M, Cetin B, Aydilek AH (2014) Drainage and mechanical behavior of highway base materials. J Irrig Drain Eng 140(6). https://doi.org/10.1061/(ASCE)IR.1943-4774.0000708

  • Hatipoglu M, Cetin B, Aydilek AH (2020) Effects of fines content on hydraulic and mechanical performance of unbound granular base aggregates. J Transport Eng 146(1). https://doi.org/10.1061/JPEODX.0000141

  • Hazen A (1892) Some physical properties of sands and gravels, with special reference to their use in filtration. Massachusetts State Board of Health, 24th Annual Report, Boston, pp 539–556

  • Hwang H-T, Jeen S-W, Suleiman AA, Lee K-K (2017) Comparison of saturated hydraulic conductivity estimated by three different methods. Water. https://doi.org/10.3390/w9120942

  • Jang J, Narsilio GA, Santamarina JC (2011) Hydraulic conductivity in spatially varying media-a pore-scale investigation. Geophys J Int 184:1167–1179. https://doi.org/10.1111/j.1365-246X.2010.04893.x

    Article  Google Scholar 

  • Kenney TC, Lau D, Ofoegbu GI (1984) Permeability of compacted granular materials. Can Geotech J 21(4):726–729. https://doi.org/10.1139/t84-080

    Article  Google Scholar 

  • Krumbein W, Sloss L (1963) Stratigraphy and sedimentation. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Liu FM, Wang DY (2012) Influence of material properties on hydraulic conductivity and strength of aggregates used for pavement base. Adv Mater Res 446–449:2641–2645. https://doi.org/10.4028/www.scientific.net/amr.446-449.2641

    Article  Google Scholar 

  • Liu YF, Jeng D-S (2019) Pore scale study of the influence of particle geometry on soil permeability. Adv Water Resour 129:232–249. https://doi.org/10.1016/j.advwatres.2019.05.024

    Article  Google Scholar 

  • Loudon AG (1952) The computation of permeability from simple soil tests. Géotechnique 3:165–183

    Article  Google Scholar 

  • Ma D, Bai H, Miao X, Pu H, Jiang B, Chen Z (2016a) Compaction and seepage properties of crushed limestone particle mixture: an experimental investigation for Ordovician karst collapse pillar groundwater inrush. Environ Earth Sci 75(11). https://doi.org/10.1007/s12665-015-4799-3

  • Ma D, Miao X, Bai H, Pu H, Chen Z, Liu J, Huang Y, Zhang G, Zhang Q (2016b) Impact of particle transfer on flow properties of crushed mudstones. Environ Earth Sci 75(593). https://doi.org/10.1007/s12665-016-5382-2

  • Ma D, Miao X, Wu Y, Bai H, Wang J, Rezania M, Huang Y, Qian H (2016c) Seepage properties of crushed coal particles. J Pet Sci Eng 146:297–307. https://doi.org/10.1016/j.petrol.2016.04.035

    Article  Google Scholar 

  • Markou IN, Christodoulou DN, Papadopoulos BK (2015) Penetrability of microfine cement grouts: experimental investigation and fuzzy regression modeling. Can Geotech J 52(7):868–882. https://doi.org/10.1139/cgj-2013-0297

    Article  Google Scholar 

  • Markou IN, Christodoulou DN, Petala ES, Atmatzidis DK (2018) Injectability of microfine cement grouts into limestone sands with different gradations: experimental investigation and prediction. Geotech Geol Eng 36:959–981. https://doi.org/10.1007/s10706-017-0368-8

    Article  Google Scholar 

  • Mbonimpa M, Aubertin M, Chapuis RP, Bussiére B (2002) Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotech Geol Eng 20(3):235–225. https://doi.org/10.1023/A:1016046214724

    Article  Google Scholar 

  • Naeej M, Naeej MR, Salehi J, Rahimi R (2017) Hydraulic conductivity prediction based on grain-size distribution using M5 model tree. Geomech Geoeng 12(2):107–114. https://doi.org/10.1080/17486025.2016.1181792

    Article  Google Scholar 

  • Nomura S, Yamamoto Y, Sakaguchi H (2018) Modified expression of Kozeny-Carman equation based on semilog-sigmoid function. Soils Found 58:1350–1357. https://doi.org/10.1016/j.sandf.2018.07.011

    Article  Google Scholar 

  • Odong J (2008) Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J Am Sci 4(1):1–6

    Google Scholar 

  • Pantazopoulos IA, Markou IN, Christodoulou DN, Droudakis AI, Atmatzidis DK, Antiohos SK, Chaniotakis E (2012) Development of microfine cement grouts by pulverizing ordinary cements. Cem Concr Compos 34:593–603. https://doi.org/10.1016/j.cemconcomp.2012.01.009

    Article  Google Scholar 

  • Ren XW, Santamarina JC (2018) The hydraulic conductivity of sediments: a pore size perspective. Eng Geol 233:48–54. https://doi.org/10.1016/j.enggeo.2017.11.022

    Article  Google Scholar 

  • Ren X, Zhao Y, Deng Q, Kang J, Li D, Wang D (2016) A relation of hydraulic conductivity-void ratio for soils based on Kozeny-Carman equation. Eng Geol 213:89–97. https://doi.org/10.1016/j.enggeo.2016.08.017

    Article  Google Scholar 

  • Řiha J, Petrula L, Hala M, Alhasan Z (2018) Assessment of empirical formulae for determining the hydraulic conductivity of glass beads. J Hydrol Hydromech 66(3):337–347. https://doi.org/10.2478/johh-2018-0021

    Article  Google Scholar 

  • Ross J, Ozbek M, Pinder GF (2007) Hydraulic conductivity estimation via fuzzy analysis of grain size data. Math Geol 39:765–780. https://doi.org/10.1007/s11004-007-9123-7

    Article  Google Scholar 

  • Sezer A, Göktepe AB, Altun S (2009) Estimation of the permeability of granular soils using neuro-fuzzy system. In: AIAI-2009 Workshops Proc, pp 333–342

  • Shahabi AA, Das BM, Tarquin AJ (1984) An empirical relation for coefficient of permeability of sand. In: Nat Conf Pub, Inst of Engineers, Australia 84(2):54–57

  • Sherard JL (1979) Sinkholes in dams of coarse, broadly graded soils. In: Trans 13th Int Congress on Large Dams, New Delhi, India, ICOLD, Paris, vol2, pp 25–35

  • Slichter CS (1898) Theoretical investigation of the motion of ground waters. US Geological Survey, 19th Annual Report, II, pp 295–384

  • Taylor DW (1948) Fundamentals of soil mechanics. John Wiley & Sons, New York

    Book  Google Scholar 

  • Terzaghi C (1925) Principles of soil mechanics: III-determination of permeability of clay. Eng News-Record 95(21):832–836

    Google Scholar 

  • Trani LDO, Indraratna B (2010) The use of particle size distribution by surface area method in predicting the saturated hydraulic conductivity of graded granular soils. Géotechnique 60(12):957–962. https://doi.org/10.1680/geot.9.T.014

    Article  Google Scholar 

  • Wang Y, Ren Y, Yang Q (2017) Experimental study on the hydraulic conductivity of calcareous sand in South China Sea. Mar Georesour Geotechnol 35(7):1037–1047. https://doi.org/10.1080/1064119X.2017.1279245

    Article  Google Scholar 

  • Yang B, Yang T, Xu Z, Liu H, Yang X, Shi W (2019) Impact of particle-size distribution on flow properties of a packed column. J Hydrol Eng 24(3). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001735

  • Zheng W, Tannant DD (2017) Improved estimate of the effective diameter for use in the Kozeny-Carman equation for permeability prediction. Géotechn Lett 7(1):1–5. https://doi.org/10.1680/jgele.16.00088

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios K. Atmatzidis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toumpanou, I.C., Pantazopoulos, I.A., Markou, I.N. et al. Predicted and measured hydraulic conductivity of sand-sized crushed limestone. Bull Eng Geol Environ 80, 1875–1890 (2021). https://doi.org/10.1007/s10064-020-02032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-020-02032-1

Keywords

Navigation