Skip to main content

Advertisement

Log in

Abiotic and biotic interactions as drivers of plant reproduction in response to fire frequency

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Plant reproduction is influenced by abiotic resources and biotic mutualistic and antagonistic interactions, which in turn can be affected by anthropogenic disturbances such as increased fire frequency. Because frequent fires deplete soil fertility and thus decrease resource availability for plants, we hypothesize that increased fire frequency decreases specific leaf area (SLA) and reproductive success. In addition, lower SLA levels in frequently burned sites should decrease herbivore damage because of reduced leaf palatability. Finally, increased fire frequency will have stronger negative effects on specialist insects (seed predators) as compared to generalist feeding insects such as herbivores and pollinators, which can have direct consequences on plant reproduction. Through an integrative path analytical approach, we assess fire frequency effects on the reproductive success of two resprouting legumes from the Chaco Serrano (Desmodium uncinatum and Rhynchosia edulis), estimating the relative importance of SLA along with pollination, insect herbivory and seed predation interactions. Increased fire frequency decreased SLA but it did not affect biotic interactions in both plant species, with the exception of increased leaf herbivory in R. edulis. Sexual reproduction of D. uncinatum was reduced in burned sites but it remained similar across burned and unburned sites in R. edulis. Within burned areas, both species efficiently maximized the allocation to reproduction, showing a conservative strategy in the use of resources when SLA levels are extremely low. Decreased plant fecundity, especially in D. uncinatum, is likely to impact on the density and long-term viability of populations growing in anthropogenic high fire frequency areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated and analysed during this study are included in the supplementary information files.

Code availability

The authors declare that they have used free software to statistical analysis (R) and the scripts are available in the supplementary information.

References

  • Adams AS, Rieske LK (2003) Prescribed fire affects white oak seedling phytochemistry: implications for insect herbivory. Forest Ecol Manag 176:37–47

    Google Scholar 

  • Aguilar R, Ashworth L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    PubMed  Google Scholar 

  • Aguilar R, Cristóbal-Pérez EJ, Balvino-Olvera FJ et al (2019) Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecol Lett 22:1163–1173

    PubMed  Google Scholar 

  • Albert CH, Thuiller W, Yoccoz NG et al (2010) Intraspecific functional variability: extent, structure and sources of variation. J Ecol 98:604–613

    Google Scholar 

  • Alemán M, Figueroa-Fleming T, Etcheverry A, Sühring S, Ortega-Baes P (2014) The explosive pollination mechanism in Papilionoideae (Leguminosae): an analysis with three Desmodium species. Plant Syst Evol 300:177–186

    Google Scholar 

  • Anacker B, Rajakaruna N, Ackerly D, Harrison S, Keeley J, Vasey M (2011) Ecological strategies in California chaparral: interacting effects of soils, climate, and fire on specific leaf area. Plant Ecol Divers 4:179–188

    Google Scholar 

  • Andersen AL (2003) Burning Issues in Savanna, Ecology and Management. In: Andersen AL, Cook GD, Williams RJ (eds) Fire in tropical savannas. The Kapalga Experiment, vol 169. Springer, New York, pp 1–14

    Google Scholar 

  • Argañaraz JP (2016) Dinámica espacial del fuego en las Sierras de Córdoba. PhD Dissertation. Universidad Nacional de Córdoba, Córdoba

    Google Scholar 

  • Argañaraz JP, Pizarro GG, Zak M, Bellis LM (2015) Fire regime, climate, and Vegetation in the Sierras de Córdoba, Argentina. Fire Ecol 11:55–73

    Google Scholar 

  • Ashman TL, Knight TM, Steet JA et al (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Google Scholar 

  • Augustine DJ, Milchunas DG (2009) Vegetation responses to prescribed burning of grazed shortgrass steppe. Rangeland Ecol Manag 62:89–97

    Google Scholar 

  • Auld TD, O’Connell MA (1989) Changes in predispersal seed predation levels after fire for two Australian legumes, Acacia elongata and Sphaerolobium vimineum. Oikos 54:55–59

    Google Scholar 

  • Boege K, Dirzo R (2004) Intraspecific variation in growth, defense and herbivory in Dialium guianense (Caesalpiniaceae) mediated by edaphic heterogeneity. Plant Ecol 175:59–69

    Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    CAS  PubMed  Google Scholar 

  • Bricca A, Catorci A, Tardella FM (2020) Intra-specific multi-trait approach reveals scarce ability in the variation of resource exploitation strategies for a dominant tall-grass under intense disturbance. Flora 270:151665

    Google Scholar 

  • Brody AK (1997) Effects of pollinators, herbivores, and seed predators on flowering phenology. Ecology 78:1624–1631

    Google Scholar 

  • Brown J, York A (2017) Fire, food and sexual deception in the neighbourhood of some Australian orchids. Austral Ecol 42:468–478

    Google Scholar 

  • Burd M (1994) Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Google Scholar 

  • Carbone LM (2017) Ecología reproductiva de Fabaceae nativas forrajeras en diferentes escenarios post-fuego de las sierras chicas de Córdoba (Argentina). PhD Dissertation. Universidad Nacional de Córdoba, Córdoba

    Google Scholar 

  • Carbone LM, Aguilar R (2016) Contrasting effects of fire frequency on plant traits of three dominant perennial herbs from Chaco Serrano. Austral Ecol 41:778–790

    Google Scholar 

  • Carbone LM, Aguilar R (2017) Fire frequency effects on soil and pollinators: what shapes sexual plant reproduction? Plant Ecol 218:1283–1297

    Google Scholar 

  • Carbone LM, Aguirre-Acosta N, Tavella J, Aguilar R (2017) Cambios florísticos inducidos por la frecuencia de fuego en el Chaco Serrano. Bol Soc Argent Bot 52:753–778

    Google Scholar 

  • Carbone LM, Tavella J, Pausas JG, Aguilar R (2019) A global synthesis of fire effects on pollinators. Global Ecol Biogeogr 28:1487–2149

    Google Scholar 

  • Cariveau D, Irwin RE, Brody AK, Garcia-Mayeya LS, Von der Ohe A (2004) Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos 104:15–26

    Google Scholar 

  • Center TD, Johnson CD (1974) Coevolution of some seed beetles (Coleoptera: Bruchidae) and their hosts. Ecology 55:1096–1103

    Google Scholar 

  • Christensen NL (1977) Fire and soil-plant nutrient relations in a pine-wiregrass savanna on the coastal plain of North Carolina. Oecologia 31:27–44

    PubMed  Google Scholar 

  • Crawley MJ (2000) Seed predators and plant population dynamics. Seeds: the ecology of regeneration in plant communities. CAB International, Wallingford, pp 167–182

    Google Scholar 

  • Dantas VL, Pausas JG, Batalha MA, Loiola P, Cianciaruso MV (2013) The role of fire in structuring trait variability in Neotropical savannas. Oecologia 171:487–494

    Google Scholar 

  • de Souza MC, Rossatto DR, Cook GD, Fujinuma R, Menzies NW, Morellato LPC, Habermann G (2016) Mineral nutrition and specific leaf area of plants under contrasting long-term fire frequencies: a case study in a mesic savanna in Australia. Trees 30:329–335

    Google Scholar 

  • Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Google Scholar 

  • Dirzo R, Domínguez CA (1995) Plant-herbivore interactions in Mesoamerican tropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 304–325

    Google Scholar 

  • Figueroa-Fleming T (2014) Interacciones planta-polinizador en Papilionoideas (Leguminosae) simpátricas nativas de Salta, Argentina. PhD Dissertation. Universidad Nacional de Salta, Salta

    Google Scholar 

  • Fuentes E, Carreras ME, Carbone LM et al (2011) Especies nativas de las Sierras Chicas (Córdoba, Argentina) con estrategias de regeneración post-fuego. Bol Soc Argent Bot 46:192

    Google Scholar 

  • García Y, Castellanos MC, Pausas JG (2016) Fires can benefit plants by disrupting antagonistic interactions. Oecologia 182:1165–1173

    PubMed  Google Scholar 

  • García Y, Castellanos MC, Pausas JG (2017) Differential pollinator response underlies plant reproductive resilience after fires. Ann Bot 122:961–971

    Google Scholar 

  • Gavier GI, Bucher EH (2004) Deforestación de las Sierras Chicas de Córdoba (Argentina) en el período 1970–1997. Academia Nacional de Ciencias, Miscelánea 101:1–27

    Google Scholar 

  • Giorgis MA (2011) Caracterización florística y estructural del Bosque Chaqueño Serrano (Córdoba) en relación a gradientes ambientales y de uso. PhD dissertation. Universidad Nacional de Córdoba, Córdoba

    Google Scholar 

  • Giorgis MA, Cingolani AM, Cabido M (2013) El efecto del fuego y las características topográficas sobre la vegetación y las propiedades del suelo en la zona de transición entre bosques y pastizales de las sierras de Córdoba, Argentina. Bol Soc Argent Bot 48:493–513

    Google Scholar 

  • Haas SM, Lortie CJ (2020) A systematic review of the direct and indirect effects of herbivory on plant reproduction mediated by pollination. PeerJ 8:e9049

    PubMed  PubMed Central  Google Scholar 

  • Huang J, Boerner RE (2008) Shifts in morphological traits, seed production, and early establishment of Desmodium nudiflorum following prescribed fire, alone or in combination with forest canopy thinning. Botany 86:376–384

    CAS  Google Scholar 

  • Huignard J, Dupont P, Tran B (1990) Coevolutionary relations between bruchids and their host plants. The influence on the physiology of the insects. In: Fujii K, Gatehouse AMR, Johnson CD, Mitchel R, Yoshida T (eds) Bruchids and legumes: economics, ecology and coevolution. Springer, Dordrecht, pp 171–179

    Google Scholar 

  • Janzen DH (1980) Specificity of seed-attacking beetles in a Costa Rican deciduous forest. J Ecol 68:929–952

    Google Scholar 

  • Johnson CD (1990) Systematics of the seed beetle genus Acanthoscelides (Bruchidae) of Northern South America. T Am Entomol Soc 116:297–618

    Google Scholar 

  • Kay AD, Schade JD, Ogdahl M, Wesserle EO, Hobbie SE (2007) Fire effects on insect herbivores in an oak savanna: the role of light and nutrients. Ecol Entomol 32:754–761

    Google Scholar 

  • Keeley JE, Pausas JG (2019) Distinguishing disturbance from perturbations in fire-prone ecosystems. Int J Wildland Fire 28:282–287

    Google Scholar 

  • Kilkenny FF, Galloway LF (2008) Reproductive success in varying light environments: direct and indirect effects of light on plants and pollinators. Oecologia 155:247–255

    PubMed  Google Scholar 

  • Kingsolver JM (2004) Handbook of the Bruchidae of the United States and Canada (Insecta, Coleoptera), Vol. I. USDA Technical Bulletin, Washington, D.C.

    Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    PubMed  Google Scholar 

  • Koltz AM, Burkle LA, Pressler Y, Dell JE, Vidal MC, Richards LA, Murphy SM (2018) Global change and the importance of fire for the ecology and evolution of insects. Curr Opin Insect Sci 29:110–116

    PubMed  Google Scholar 

  • Kowaljow E, Morales MS, Whitworth-Hulse JI et al (2018) A 55-year-old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degrad Dev 30:266–277

    Google Scholar 

  • Kral KC, Limb RF, Harmon JP, Hovick TJ (2017) Arthropods and fire: previous research shaping future conservation. Rangeland Ecol Manag 70:589–598

    Google Scholar 

  • Lazarina M, Sgardelis SP, Tscheulin T, Devalez J, Mizerakis V, Kallimanis AS, Papakonstantinou S, Kyriazis T, Petanidou T (2017) The effect of fire history in shaping diversity patterns of flower-visiting insects in post-fire Mediterranean pine forests. Biodivers Conserv 26(1):115–131

    Google Scholar 

  • Lazarina M, Devalez J, Neokosmidis L et al (2019) Moderate fire severity is best for the diversity of most of the pollinator guilds in Mediterranean pine forests. Ecology 100:e02615

    PubMed  Google Scholar 

  • Lefcheck JS (2016) PiecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579

    Google Scholar 

  • Lefcheck J, Byrnes J, Grace J (2019) Package ‘piecewiseSEM’. Retrieved from https://cran.r-project.org/web/packages/piecewiseSEM/index.html

  • LoPresti EF, Van Wyk JI, Mola JM, Toll K, Miller TJ, Williams NM (2018) Effects of wildfire on floral display size and pollinator community reduce outcrossing rate in a plant with a mixed mating system. Am J Bot 105:1154–1164

    CAS  PubMed  Google Scholar 

  • Luti R, Bertran de Solis MA, Galera MF et al (1979) Vegetación. In: Vázquez JB, Miatello RA, Roqué ME (eds) Geografía física de la provincia de Córdoba. Boldt, Buenos Aires, pp 297–368

    Google Scholar 

  • Marquez V, Carbone LM, Aguilar R, Ashworth L (2019) Frequent fires do not affect sexual expression and reproduction in Vachellia caven. Austral Ecol 44:725–733

    Google Scholar 

  • Martinat JE (2012) Efecto del choque térmico simulando la acción del fuego, en la germinación de Fabáceas y Poáceas forrajeras de las Sierras Chicas de Córdoba. MSc Dissertation. Universidad Nacional de Córdoba, Córdoba

    Google Scholar 

  • Maschinski J, Whitham TG (1989) The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. Am Nat 134:1–19

    Google Scholar 

  • Mitchell RJ (2001) Path analysis—pollination. In: Scheiner SM, Gurevitch J (eds) Desing and analysis of ecological experiments, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Moretti M, Duelli P, Obrist MK (2006) Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149:312–327

    PubMed  Google Scholar 

  • Pausas JG (2019) Generalized fire response strategies in plants and animals. Oikos 128:147–153

    Google Scholar 

  • Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:598–601

    Google Scholar 

  • Pellegrini AF, Hedin LO, Staver AC, Govender N (2015) Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96:1275–1285

    PubMed  Google Scholar 

  • Pellegrini AF, Ahlström A, Hobbie SE et al (2018) Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553:194–198

    CAS  PubMed  Google Scholar 

  • Peralta G, Stevani EL, Chacoff NP, Dorado J, Vázquez DP (2017) Fire influences the structure of plant–bee networks. J Animal Ecol 86:1372–1379

    Google Scholar 

  • Pérez-Harguindeguy N, Diaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/

  • Reich PB, Abrams MD, Ellsworth DS, Kruger EL, Tabone TJ (1990) Fire affects ecophysiology and community dynamics of central Wisconsin oak forest regeneration. Ecology 71:2179–2190

    Google Scholar 

  • Rieske LK (2002) Wildfire alters oak growth, foliar chemistry, and herbivory. Forest Ecol Manag 168:91–99

    Google Scholar 

  • Rosbakh S, Romermann C, Poschlod P (2015) Specific leaf area correlates with temperature: new evidence of trait variation at the population, species and community levels. Alpine Bot 125:79–86

    Google Scholar 

  • Schafer JL, Mack MC (2018) Nutrient limitation of plant productivity in scrubby flatwoods: does fire shift nitrogen versus phosphorus limitation? Plant Ecol 219:1063–1079

    Google Scholar 

  • Shipley B (2013) The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94:560–564

    PubMed  Google Scholar 

  • Simanonok MP, Burkle LA (2019) Nesting success of wood-cavity-nesting bees declines with increasing time since wildfire. Ecol Evol 9:12436–12445

    PubMed  PubMed Central  Google Scholar 

  • Swengel AB (2001) A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers Conserv 10:1141–1169

    Google Scholar 

  • Violle C, Navas ML, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892

    Google Scholar 

  • Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge

    Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    CAS  PubMed  Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076

    PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Matias Wajner and Julia L. Camina for fieldwork assistance; to Melisa Giorgis and Juan P. Argañaraz for providing the information of fire history, to Claudio Sosa for help in the identification of bees and Arturo L. Terán for identification of bruchids; and to proprietors of fields for their permission and provided information. Special thanks go to Ana Calviño for the help in the statistical analysis and recommendations. We also are thankful for the valuable comments made by two anonymous reviewers who helped improve the original version of this paper. L.M.C. is a researcher from CONICET and professor of Faculty of Agronomy Sciences of the National University of Córdoba; R.A. is a researcher from CONICET.

Funding

This work was supported by the Science and Technology Secretary of the National University of Córdoba [33820180100138CB], CONICET [PIP 2016-0764] and FONCyT [PICT 2011-1606].

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LMC. The first draft of the manuscript was written by LMC and RA commented on previous versions of the manuscript. Both authors review, edit and approved the final version of this manuscript.

Corresponding author

Correspondence to Lucas M. Carbone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We have to the permission of the proprietors of fields and the nature reserve authorities for the field sampling.

Consent to participate

The authors declare that they have consented to participate in this paper.

Consent for publication

The authors declare that they have consented to the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbone, L.M., Aguilar, R. Abiotic and biotic interactions as drivers of plant reproduction in response to fire frequency. Arthropod-Plant Interactions 15, 83–94 (2021). https://doi.org/10.1007/s11829-020-09792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-020-09792-3

Keyword

Navigation