Skip to main content
Log in

Efficient, fast response, and low cost sensor for NH3 gas molecules based on SnO2: CuO/macroPSi nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, a procedure of the inserting of SnO2:CuO nanoparticles with different CuO nanoparticles contents within a macroporous silicon layer (macroPSi) gas sensor was prepared and successfully investigated. The macroPSi was effectively fabricated by laser assisted etching process, and CuO nanoparticles loaded with SnO2 with a high value of surface area were successfully synthesized by the spray pyrolysis method. Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FE-SEM) manifested a novel morphology for CuO Bucky particles inside the pores and a nano nail like structure for SnO2 with a small average grain size of CuO Bucky particles with 30% content. This morphology of nanocomposites improved the sensing performance for NH3 gas. A higher sensitivity with a very swift response and recovery times of 4 s and 55 s, respectively, was obtained with 150 ppm of NH3 gas at the room temperature. This improvement in gas sensor performance is strongly related to the higher specific surface areas and smaller particle size with a higher surface roughness of SnO2 and CuO nanoparticles within the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Li, X. Li, Z. Li, J. Wang, J. Zhang, WS2 nanoflakes based selective ammonia sensors at room temperature. Sens. Actuators B Chem. 240, 273–277 (2017)

    Google Scholar 

  2. C.-T. Lee, Y.-S. Wang, High-performance room temperature NH3 gas sensors based on polyaniline-reduced graphene oxide nanocomposite sensitive membrane. J. Alloy. Compd. 789, 693–696 (2019)

    Google Scholar 

  3. A.M. Alwan, A.B. Dheyab, A.J. Allaa, Study of the influence of incorporation of gold nanoparticles on the modified porous silicon sensor for petroleum gas detection. Eng Technol J 35, 811–815 (2017)

    Google Scholar 

  4. A. Sharma, P. Bhojane, A.K. Rana, Y. Kumar, P.M. Shirage, Mesoporous nickel cobalt hydroxide/oxide as an excellent room temperature ammonia sensor. Scripta. Mater. 128, 65–68 (2017)

    Google Scholar 

  5. D.A. Hashim, A.M. Alwan, M.F. Jawad, Influence of Ag NPs on silicon nanocolumns NH3 gas sensors. J. Electrochem. Soc. 165, 773–778 (2018)

    Google Scholar 

  6. A.M. Alwan, A.B. Dheyab, Room temperature CO2 gas sensors of AuNPs/mesoPSi hybrid structures. J. Appl. Nanosci. 7, 335–341 (2017)

    ADS  Google Scholar 

  7. A.M. Alwan, R.A. Abbas, A.B. Dheyab, Study the Characteristic of planer and sandwich PSi gas sensor (Comparative Study). Silicon 10, 2527–2534 (2018)

    Google Scholar 

  8. A.J. Kulandaisamy, J.R. Reddy, P. Srinivasan, K.J. Babu, G.K. Mani, P. Shankar, J.B.B. Rayappan, Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping. J. Alloys Compd. 688, 422–429 (2016)

    Google Scholar 

  9. S. Mubeen, M. Lai, T. Zhang, J. Lim, A. Mulchandani, M.A. Deshusses, N.V. Myung, Hybrid tin oxide-SWNT nanostructures based gas sensor. Electrochim. Acta 92, 484–490 (2013)

    Google Scholar 

  10. A. Sharma, M. Tomar, V. Gupta, Low temperature operating SnO2 thin film sensor loaded with WO3 micro-discs with enhanced response for NO2 gas. Sens. Actuators B 161, 1114–1118 (2012)

    Google Scholar 

  11. A. Chowdhuri, V. Gupta, K. Sreenivas, Fast response H2S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO2. Sens. Actuators B 93, 572–579 (2003)

    Google Scholar 

  12. N.V. Toan, N.V. Chien, N.V. Duy, D.D. Vuong, N.H. Lam, N.D. Hoa, N.V. Hieu, Scalable fabrication of SnO2 thin films sensitized with CuO islands for enhanced H2S gas sensing performance. Appl. Surf. Sci. 324, 280–285 (2015)

    ADS  Google Scholar 

  13. A. Sharma, M. Tomar, V. Gupta, Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters. Sens. Actuators B 181, 735–742 (2013)

    Google Scholar 

  14. L.A. Patil, D.R. Patil, Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature. Sens. Actuators B 120, 316–323 (2006)

    Google Scholar 

  15. A. Kumar, A. Sanger, A. Kumar, R. Chandra, Highly sensitive and selective CO gas sensor based on a hydrophobic SnO2/CuO bilayer. Royal Society of Chemistry 6, 47178–47184 (2016)

    Google Scholar 

  16. T.-T. Li, R.-R. Zheng, Yu. Hui, Y. Yang, T.-T. Wang, X.-T. Dong, Synthesis of highly sensitive disordered porous SnO2 aerogel composite material by the chemical deposition method: synergistic effect of a layer of CuO thin film. R. Soc. Chem. 7, 39334–39340 (2017)

    Google Scholar 

  17. N.S.A. Eom, H.B. Cho, Y. Song, G.M. Go, J. Lee, Y.H. Choa, Room-temperature H2S gas sensing by selectively synthesized Cux (x= 1, 2) O: SnO2 thin film nanocomposites with oblique & vertically assembled SnO2 ceramic nanorods. Sens. Actuators B Chem. 273, 1054–1061 (2018)

    Google Scholar 

  18. Z. Bo, X. Wei, X. Guo, H. Yang, S. Mao, J. Yan, K. Cen, SnO2 nanoparticles incorporated CuO nanopetals on graphene for high-performance room-temperature NO2 sensor. Chem. Phys. Lett. 750, 137485 (2020)

    Google Scholar 

  19. M. Li, Hu. Ming, P. Zeng, S. Ma, W. Yan, Y. Qin, Effect of etching current density on microstructure and NH3-sensing properties of porous silicon with intermediate-sized pores. Electrochim. Acta 108, 167–174 (2013)

    Google Scholar 

  20. M. Li, M. Hu, Q. Liu, S. Ma, P. Sun, Microstructure characterization and NO2-sensing properties of porous silicon with intermediate pore size. Appl. Surf. Sci. 268, 188–194 (2013)

    ADS  Google Scholar 

  21. A.A. Yousif, A.M. Alwan, H.R. Abed, Optimizing of macro porous silicon morphology for creation of SnO2/CuO nanoparticles. AIP Conf. Proc. 2213(1), 020004 (2020)

    Google Scholar 

  22. A.M. Alwan, A.A. Yousif, L.A. Wali, A study on the morphology of the silver nanoparticles deposited on the n-type porous silicon prepared under different illumination types. Plasmonics 13, 1191–1199 (2017)

    Google Scholar 

  23. R.A. Ismail, A.M. Alwan, A.S. Ahmed, Preparation and characteristics study of nano-porous silicon UV photodetector. Appl Nanosci 7, 9–15 (2016)

    ADS  Google Scholar 

  24. A. Majid, T. James, S. Argue, D. Kingston, M. Post, J. Margeson, G.J. Gardner, Characterization of CuO phase in SnO2–CuO prepared by the modified Pechini method. J. Sol-Gel Sci. Technol. 53(2), 390–398 (2010)

    Google Scholar 

  25. A.M. Alwan, A.J. Allaa, Design and fabrication of nanostructures silicon photodiode. Mod. Appl. Sci. 5, 106–112 (2011)

    Google Scholar 

  26. H.R. Abed, A.M. Alwan, A.A. Yousif, N.F. Habubi, Efficient SnO2/CuO/porous silicon nanocomposites structure for NH3 gas sensing by incorporating CuO nanoparticles. Opt. Quant. Electron. 51, 1–13 (2019)

    Google Scholar 

  27. B.A. Latefa, S. Naama, A. Keffous, A. Hassein-Bey, T. Hadjesi, H2 sensing properties of modified silicon nanowires. Prog. Natl. Sci. Mater. Int. 25(2), 101–110 (2015)

    Google Scholar 

  28. M.V. Nguyen, N.D. Chinh, B.T. Huy, Y.-I. Lee, CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors. Sci. Rep. 6(1), 1–13 (2016)

    Google Scholar 

  29. J. Liu, Lu. Yiting, X. Cui, Y. Geng, G. Jin, Z. Zhai, Gas-sensing properties and sensitivity promoting mechanism ofCu-added SnO2thin films deposited by ultrasonic spray pyrolysis. Sens. Actuators B Chem. 248, 862–867 (2017)

    Google Scholar 

  30. L. Hou, C. Zhang, L. Li, Du. Cheng, X. Li, X.-F. Kang, W. Chen, CO Gas sensors based on p-type CuO nanotubes and CuO nanocubes: morphology and surface structure effects on the sensing performance. Talanta 188, 41–49 (2018)

    Google Scholar 

  31. A.H. Min, H.-J. Kim, H.C. Lee, J.-S. Park, H.-N. Lee, Effects of porosity and particle size on the gas sensing properties of SnO2 films. Appl. Surf. Sci. 481, 133–137 (2019)

    ADS  Google Scholar 

  32. Z.S. Hosseini, A. Irajizad, A. Mortezaali, Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sens. Actuators B Chem. 207, 865–871 (2015)

    Google Scholar 

  33. F. Mohd-Yasin, D.J. Nagel, C.E. Korman, Noise in MEMS. Meas. Sci. Technol. 21(1), 012001 (2009)

    ADS  Google Scholar 

  34. A.M. Alwan, D.A. Hashim, M.F. Jawad, Efficient bimetallic nanoparticles embedded-porous silicon CO gas sensor. Solid State Electron. 153, 37–45 (2019)

    ADS  Google Scholar 

  35. L. Wang, J. Deng, T. Fei, T. Zhang, Template-free synthesized hollow NiO–SnO2 nanospheres with high gas-sensing performance. Sens. Actuators B Chem. 164, 90–95 (2012)

    Google Scholar 

  36. S. Xu, K. Kan, Y. Yang, C. Jiang, J. Gao, L.Q. Jing, P.K. Shen, L. Li, K.Y. Shi, Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers. J. Alloy. Comp. 618, 240–247 (2015)

    Google Scholar 

  37. P.G. Su, L.Y. Yang, NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sens. Actuators B: Chem. 223, 202–208 (2016)

    Google Scholar 

  38. Y. Chen, W. Zhang, Q.S. Wu, A highly sensitive room-temperature sensing material for NH3: SnO2-nanorods coupled by rGO. Sens. Actuators B: Chem. 242, 1216–1226 (2017)

    Google Scholar 

  39. J.N. Deng, R. Zhang, L.L. Wang, Z. Lou, T. Zhang, Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sens. Actuators B Chem. 209, 449–455 (2015)

    Google Scholar 

  40. M. Takács, C. Dücso, A.E. Pap, Fine-tuning of gas response by modification of nano-crystalline WO3 layer morphology. Sens. Actuators B Chem. 221, 281–289 (2015)

    Google Scholar 

  41. D.D. Trung, N.D. Cuong, K.Q. Trung, T.-D. Nguyen, N. Van Toan, C.M. Hung, N. Van Hieu, Controlled synthesis of manganese tungstate nanorods for highly selective NH3 gas sensor. J. Alloys Compd. 735, 787–794 (2018)

    Google Scholar 

  42. F. Yan, G. Shen, Xi. Yang, T. Qi, J. Sun, X. Li, M. Zhang, Low operating temperature and highly selective NH3 chemiresistive gas sensors based on Ag3PO4 semiconductor. Appl. Surf. Sci. 479, 1141–1147 (2019)

    ADS  Google Scholar 

  43. R.S. Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Tuning the selectivity of NH3 gas sensing response using Cu-doped ZnO nanostructures. Sens. Actuators A Phys. 269, 331–341 (2018)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank University of Technology, Baghdad-Iraq, Mustansiriyah University, Baghdad-Iraq, and University of Tehran, Tehran-Iran, for their support in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir F. Habubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, H.R., Yousif, A.A., Alwan, A.M. et al. Efficient, fast response, and low cost sensor for NH3 gas molecules based on SnO2: CuO/macroPSi nanocomposites. Appl. Phys. A 126, 917 (2020). https://doi.org/10.1007/s00339-020-04106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04106-z

Keywords

Navigation