Skip to main content
Log in

Effect of indentation loading type on the mechanical properties of advanced high strength steel grade DP 800

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The goal of this study was to acquire mechanical properties of a dual-phase grade advanced high strength steel (AHSS) by means of different microindentation loading conditions. Conventional, cyclic, and multi-step indentations were performed on DP 800 sample; and Young’s modulus, hardness values were obtained by the depth-sensing indentation technique. Effects of different load levels (50–300 mN) and type of indentation on the results were also analyzed through ANOVA. The load levels experimented yielded overall material response rather than its constituents (e.g., martensite and ferrite). Both hardness and Young’s modulus tend to decrease with increasing maximum indentation load level, especially from 50 to 100 mN, which is regarded as indentation size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Ferro, A. Tiziani, Metallurgical and mechanical characterization of electron beam welded DP600 steel joints. J. Mater. Sci. 47, 199–207 (2012)

    ADS  Google Scholar 

  2. X. Hu, K.S. Choi, X. Sun, Y. Ren, Y. Wang, Determining individual phase flow properties in a quench and partitioning steel with in situ high-energy X-ray diffraction and multiphase elasto-plastic self-consistent method. Metall. Mater. Trans. A 47, 5733–5749 (2016)

    Google Scholar 

  3. B. Johansson, K. Olsson, Tooling solutions for advanced high strength steel, in: Uddeholm Automotive Tooling Seminar, February 9–11, 2005, Sunne, Sweden

  4. R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry. Arch. Civ. Mech. Eng. 8, 103–117 (2008)

    Google Scholar 

  5. Ö.N. Cora, Development of rapid die wear test method for assessment of dielife and performance in stamping of Advanced/Ultra High Strength Steel (A/UHSS) sheet materials, Ph.D Disstertation, Virginia Commonwealth University, Richmond, VA, USA, (2009)

  6. E.V. Nesterova, S. Bouvier, B. Bacroix, Microstructure evolution and mechanical behavior of a high strength dual-phase steel under monotonic loading. Mater. Charact. 100, 152–162 (2015)

    Google Scholar 

  7. S. Keeler, M. Kimchi, P.J. Mooney, Advanced high-strength steels—application Guidelines v.6.0, World Auto Steel, (2017)

  8. N.H. Abid, R.K.A. Al-Rub, A.N. Palazotto, Micromechanical finite element analysis of the effects of martensite morphology on the overall mechanical behavior of dual phase steel. Int. J. Solids Struct. 104–105, 8–24 (2017)

    Google Scholar 

  9. M.I. Khan, M.L. Kuntz, E. Biro, Y. Zhou, Microstructure and mechanical properties of resistance spot welded advanced high strength steels. Mater. Trans. 49, 1629–1637 (2008)

    Google Scholar 

  10. K. Hayashi, K. Miyata, F. Katsuki, T. Ishimoto, T. Nakano, Individual mechanical properties of ferrite and martensite in Fe-0.16 mass% C–1.0 mass% Si-1.5 mass% Mn steel. J. Alloy. Compd. 577, S593–S596 (2013)

    Google Scholar 

  11. F. Zhang, A. Ruimi, D.P. Field, Phase identification of dual-phase (DP980) steels by electron backscatter diffraction and nanoindentation techniques. Microsc. Microanal. 22, 99–107 (2016)

    ADS  Google Scholar 

  12. V.H. Baltazar-Hernandez, S.K. Panda, M.L. Kuntz, Y. Zhou, Nanoindentation and microstructure analysis of resistance spot welded dual phase steel. Mater. Lett. 64, 207–210 (2010)

    Google Scholar 

  13. G. Cheng, F. Zhang, A. Ruimi, D.P. Field, X. Sun, Quantifying the effects of tempering on individual phase properties of DP980 steel with nanoindentation. Mat. Sci. Eng. A 667, 240–249 (2016)

    Google Scholar 

  14. A.E. Giannakopoulos, S. Suresh, Determination of elastoplastic properties by instrumented sharp indentation. Scr. Mater. 40, 1191–1198 (1999)

    Google Scholar 

  15. L. Qian, M. Li, Z. Zhou, H. Yang, X. Shi, Comparison of nano-indentation hardness to microhardness. Surf. Coat. Tech. 195, 264–271 (2005)

    Google Scholar 

  16. M.Y. N’Jock, F. Roudet, M. Idriss, O. Bartier, D. Chicot, Work-of-indentation coupled to contact stiffness for calculating elastic modulus by instrumented indentation. Mech. Mater. 94, 170–179 (2016)

    Google Scholar 

  17. C.D. Hardie, S.G. Roberts, A.J. Bushby, Understanding the effects of ion irradiation using nanoindentation techniques. J. Nucl. Mater. 462, 391–401 (2015)

    ADS  Google Scholar 

  18. I. Sapezanskaia, J.J. Roa, G. Fargas, M. Turon-Viñas, T. Trifonov, R. Kouitat-Njiwa, A. Redjaïmia, A. Mateo, Deformation mechanisms induced by nanoindentation tests on a metastable austenitic stainless steel: a FIB/SIM investigation. Mater. Charact. 131, 253–260 (2017)

    Google Scholar 

  19. L. Zhu, B. Xu, H. Wang, C. Wang, D. Yang, Measurement of mechanical properties of 1045 steel with significant pile-up by sharp indentation. J. Mater. Sci. 46, 1083–1086 (2011)

    ADS  Google Scholar 

  20. K.H. Chung, W. Lee, J.H. Kim, C. Kim, S.H. Park, D. Kwon, K. Chung, Characterization of mechanical properties by indentation tests and FE analysis—validation by application to a weld zone of DP590 steel. Int. J. Solids Struct. 46, 344–363 (2009)

    Google Scholar 

  21. Z.H. Xu, D. Rowcliffe, Method to determine the plastic properties of bulk materials by nanoindentation. Philos. Mag. 82, 1893–1901 (2002)

    ADS  Google Scholar 

  22. F. Ye, X. Sun, Nanoindentation response analysis of TiN–Cu coating deposited by magnetron sputtering. Progress Nat. Sci. Mater. Inter. 28, 40–44 (2018)

    Google Scholar 

  23. M. Szala, M. Walczak, K. Pasierbiewicz, M. Kaminski, Cavitation erosion and sliding wear mechanisms of AlTiN and TiAlN films deposited on stainless steel substrate. Coatings 9, 340 (2019)

    Google Scholar 

  24. B. Bor, D. Giuntini, B. Domènech, M.V. Swain, G.A. Schneider, Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocomposites. J. Eur. Ceram. Soc. 39, 3247–3256 (2019)

    Google Scholar 

  25. A. Tiwari, S. Natarajan, Applied Nanoindentation in Advanced Materials (Wiley, New York, 2017)

    Google Scholar 

  26. F. Zhang, A. Ruimi, P.C. Wo, D.P. Field, Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior. Mat. Sci. Eng. A 659, 93–103 (2016)

    Google Scholar 

  27. I. Diego-Calderón, M.J. Santofimia, J.M. Molina-Aldareguia, M.A. Monclús, I. Sabirov, Deformation behavior of a high strength multiphase steel at macro- and micro-scales. Mat. Sci. Eng. A 611, 201–211 (2014)

    Google Scholar 

  28. H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, K.S. Kumar, Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater. 62, 197–211 (2014)

    ADS  Google Scholar 

  29. M.D. Taylor, K.S. Choi, X. Sun, D.K. Matlock, C.E. Packard, L. Xu, F. Barlat, Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels. Mat. Sci. Eng. A 597, 431–439 (2014)

    Google Scholar 

  30. R. Rodriguez, I. Gutierrez, Correlation between nanoindentation and tensile properties: influence of the indentation size effect. Mat. Sci. Eng. A 361, 377–384 (2003)

    Google Scholar 

  31. Docol DP/DL Cold reduced dual phase steels, Datasheet: 13-02-14 GB8201 DOCOL, SSAB (2014)

  32. W. Wang, X. Wei, The effect of martensite volume and distribution on shear fracture propagation of 600–1000 MPa dual phase sheet steels in the process of deep drawing. Int. J. Mech. Sci. 67, 100–107 (2013)

    Google Scholar 

  33. X. Chen, I.A. Ashcroft, R.D. Wildman, C.J. Tuck, A combined inverse finite element - elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale. Int. J. Solids Struct. 104–105, 25–34 (2017)

    Google Scholar 

  34. D.J. Shuman, A.L.M. Costa, M.S. Andrade, Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater. Charact. 58, 380–389 (2007)

    Google Scholar 

  35. H.R. Lashgari, J.M. Cadogan, D. Chu, S. Li, The effect of heat treatment and cyclic loading on nanoindentation behaviour of FeSiB amorphous alloy. Mater. Design. 92, 919–931 (2016)

    Google Scholar 

  36. T. Saraswati, T. Sritharan, S. Mhaisalkar, C.D. Breach, F. Wulff, Cyclic loading as an extended nanoindentation technique. Mater. Sci. Eng. A 423, 14–18 (2006)

    Google Scholar 

  37. A. Chabok, E. Galinmoghaddam, J.T.M. De Hosson, Y.T. Pei, Micromechanical evaluation of DP1000-GI dual-phase high-strength steel resistance spot weld. J. Mater. Sci. 54, 1703–1715 (2019)

    ADS  Google Scholar 

  38. J.J. Roa, I. Sapezanskaia, G. Fargas, R. Kouitat, A. Redjaimia, A. Mateo, Dynamic deformation of metastable austenitic stainless steels at the nanometric length scale. Metall. Mater. Trans. A 49, 6034–6039 (2018)

    Google Scholar 

  39. J. Wu, Y. Pan, J. Pi, Nanoindentation study of Cu52Zr37Ti8In3 bulk metallic glass. Appl. Phys. A 115(1), 305–312 (2014)

    ADS  Google Scholar 

  40. C.J. Chen, K. Yan, L. Qin, M. Zhang, X. Wang, T. Zou, Z. Hu, Effect of heat treatment on microstructure and mechanical properties of laser additively manufactured AISI H13 tool steel. J. Mater. Eng. Perform. 26, 5577–5589 (2017)

    Google Scholar 

  41. R.A. Rijkenberg, M.P. Aarnts, F.A. Twisk, M.J. Zuijderwijk, M. Knieps, H. Pfaff, Linking crystallographic, chemical and nano-mechanical properties of phase constituents in DP and TRIP steels. Mater. Sci. Forum 638–642, 3465–3472 (2010)

    Google Scholar 

  42. C.A. Schuh, Nanoindentation studies of materials. Mater. Today 9, 32–40 (2006)

    Google Scholar 

  43. M. Ruiz-Andres, A. Conde, J. Damborenea, I. Garcia, Microstructural and micromechanical effects of cold roll-forming on high strength dual phase steels. Mater. Res. 18, 843–852 (2015)

    Google Scholar 

  44. M. Delincé, P.J. Jacques, T. Pardoen, Separation of size-dependent strengthening contributions in fine-grained dual phase steels by nanoindentation. Acta Mater. 54, 3395–3404 (2006)

    ADS  Google Scholar 

  45. D. Pan, T.G. Nieh, M.W. Chen, Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Appl. Phys. Lett. 88, 161922 (2006)

    ADS  Google Scholar 

  46. P. Cavaliere, Mechanical properties of nanocrystalline materials, in Handbook of mechanical nanostructuring. ed. by M. Aliofkhazraei (Wiley-VCH, Singapore, 2015), p. 8

    Google Scholar 

  47. C. Feng, B.S. Kang, Young’s modulus measurement using a simplified transparent indenter measurement technique. Exp. Mech. 48, 9–15 (2008)

    Google Scholar 

  48. A. Richter, C.P. Daghlian, R. Ries, V.L. Solozhenko, Investigation of novel superhard materials by multi-cycling nanoindentation. Diam. Relat. Mater. 15, 2019–2023 (2006)

    ADS  Google Scholar 

  49. J. Wei, B.L. McFarlin, A.J.W. Johnson, A multi-indent approach to detect the surface of soft materials during nanoindentation. J. Mater. Res. 31, 2672–2685 (2016)

    ADS  Google Scholar 

  50. Z.S. Ma, Y.C. Zhou, S.G. Long, C. Lu, On the intrinsic hardness of a metallic film/substrate system: indentation size and substrate effects. Int. J. Plast. 34, 1–11 (2012)

    Google Scholar 

  51. J. Nohava, R. Mušálek, J. Matějíček, M. Vilémová, A contribution to understanding the results of instrumented indentation on thermal spray coatings—case study on Al2O3 and stainless steel. Surf. Coat. Tech. 240, 243–249 (2016)

    Google Scholar 

  52. Y. Mazaheri, A. Kermanpur, A. Najafizadeh, Nanoindentation study of ferrite–martensite dual phase steels developed by a new thermomechanical processing. Mat. Sci. Eng. A 639, 8–14 (2015)

    Google Scholar 

  53. A. Bolshakov, G.M. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13, 1049–1058 (1998)

    ADS  Google Scholar 

  54. J.D. Gale, A. Achuthan, The effect of work-hardening and pile-up on nanoindentation measurements. J. Mater. Sci. 49, 5066–5075 (2014)

    ADS  Google Scholar 

  55. D. Ekmekci, F. Yılmaz, U. Kölemen, Ö.N. Cora, Microindentation on the porous copper surface modulations. Appl. Phys. A 123, 705 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by The Scientific and Technological Council of Turkey (TUBITAK) under Grant No. 218M913. The authors are also grateful to Prof. Dr. Uğur Kölemen and Assoc. Prof. Dr. Fikret Yılmaz of Gaziosmanpaşa University for sharing their lab capabilities and their assistance in microindentation tests. We extend our gratitude to SSAB for providing test materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Necati Cora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekmekci, D., Cora, Ö.N. Effect of indentation loading type on the mechanical properties of advanced high strength steel grade DP 800. Appl. Phys. A 126, 916 (2020). https://doi.org/10.1007/s00339-020-04095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04095-z

Keywords

Navigation