Skip to main content
Log in

A combined model for formation mechanism of ripples induced by femtosecond laser on silicon carbide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, a comparative study is performed to explore the formation mechanism of laser-induced periodic surface structures (LIPSS) using femtosecond laser on silicon carbide (SiC). The optical properties of SiC transformed to a metal-like state when the excited carrier density exceeds 2e22 cm−3 under laser irradiation and significantly altered the laser energy deposition. The laser-induced carrier density coupled with the optical properties and the incident laser intensity profile were calculated. The two-temperature model was used to describe the energy transformation from electron to lattice and guided to select appropriate laser conditions for producing ripples. The spatial period of laser-induced periodic nanostructures was calculated in frequency domain based on the Drude-Sipe model that comprised the estimation of free carrier density. The calculated range of the spatial period of LIPSS was about from 776 to 544 nm. Additionally, the experimental value was about 719–483 nm, which contained a good consistency with the theoretical results. This work provides a new approach for the prediction and fabrication of the LIPSS on SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. V. Presser, K.G. Nickel, Silica on silicon carbide. Crit. Rev. Solid State Mater. Sci. 33(1), 1–99 (2008)

    ADS  Google Scholar 

  2. H. Morkoc et al., Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76(3), 1363–1398 (1994)

    ADS  Google Scholar 

  3. M. Shur, S.L. Rumyantsev, SiC materials and devices, vol. 1 (World Scientific, Singapore, 2006)

    Google Scholar 

  4. M. Cabello et al., Advanced processing for mobility improvement in 4H-SiC MOSFETs: A review. Mater. Sci. Semicond. Process. 78, 22–31 (2018)

    Google Scholar 

  5. C. Chen, A review of SiC power module packaging: layout, material system and integration. CPSS Transact. Power Electron. Appl. 2(3), 170–186 (2017)

    Google Scholar 

  6. Z. Ni et al., in Review of SiC MOSFET Based Three-Phase Inverter Lifetime Prediction. 2017 Thirty Second Annual Ieee Applied Power Electronics Conference and Exposition (Apec), (2017) p. 1007–1014

  7. L.L. Snead et al., Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371(1–3), 329–377 (2007)

    ADS  Google Scholar 

  8. R.B. Wu et al., Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater Sci. 72, 1–60 (2015)

    Google Scholar 

  9. W. Krenkel, F. Berndt, C/C–SiC composites for space applications and advanced friction systems. Mater. Sci. Eng. A 412(1–2), 177–181 (2005)

    Google Scholar 

  10. Z.Y. Zhai et al., Influence of surface morphology on processing of C/SiC composites via femtosecond laser. Compos. Part A Appl. Sci. Manuf. 102, 117–125 (2017)

    Google Scholar 

  11. S.H. Kim et al., Progressive formation of fine and coarse ripples on SiC surface by repeated irradiation of femtosecond laser pulses. Appl. Phys. B Lasers Optics 113(3), 395–402 (2013)

    ADS  Google Scholar 

  12. V. Khuat et al., Uniform nano-ripples on the sidewall of silicon carbide micro-hole fabricated by femtosecond laser irradiation and acid etching. Appl. Phys. Lett. 104(24), 241907 (2014)

    ADS  Google Scholar 

  13. Q.Z. Zhao et al., Enhancement of optical absorption and photocurrent of 6H-SiC by laser surface nanostructuring. Appl. Phys. Lett. 91(12), 121107 (2007)

    ADS  Google Scholar 

  14. J.Y. Fan, X.L. Wu, P.K. Chu, Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties. Prog. Mater Sci. 51(8), 983–1031 (2006)

    Google Scholar 

  15. P. Melinon et al., Playing with carbon and silicon at the nanoscale. Nat. Mater. 6(7), 479–490 (2007)

    ADS  Google Scholar 

  16. K. Zekentes, K. Rogdakis, SiC nanowires: material and devices. J. Phys. D Appl. Phys. 44(13), 133001 (2011)

    ADS  Google Scholar 

  17. Q.L. Pang et al., 3C-SiC nanowires and micro-scaled polyhedra: Synthesis, characterization and properties. J. Alloy. Compd. 501(1), 60–66 (2010)

    Google Scholar 

  18. Z.Y. Zhai et al., Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites. Opt. Commun. 424, 137–144 (2018)

    ADS  Google Scholar 

  19. B. Pecholt, S. Gupta, P. Molian, Review of laser microscale processing of silicon carbide. J. Laser Appl. 23(1), 012008 (2011)

    ADS  Google Scholar 

  20. A.N. Samant, N.B. Dahotre, Laser machining of structural ceramics—A review. J. Eur. Ceram. Soc. 29(6), 969–993 (2009)

    Google Scholar 

  21. H. Wang et al., Laser drilling of structural ceramics—A review. J. Eur. Ceram. Soc. 37(4), 1157–1173 (2017)

    Google Scholar 

  22. M. Malinauskas et al., Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5(8), e16133 (2016)

    Google Scholar 

  23. K. Sugioka, Y. Cheng, Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 3(4), 149–149 (2014)

    Google Scholar 

  24. J. Song et al., The three-level ripples induced by femtosecond laser on a 6H-SiC single crystal and the formation mechanism. Appl. Phys. A Mater. Sci. Process. 122(4), 450 (2016)

    ADS  Google Scholar 

  25. J. Bonse et al., Laser-induced periodic surface structures—A scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017)

    Google Scholar 

  26. E. Skoulas et al., Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci Rep 7, 45114 (2017)

    ADS  Google Scholar 

  27. E.M. Garcell, B. Lam, C. Guo, Femtosecond laser induced herringbone patterns. Appl Phys A Mater Sci Process 124(6), 405 (2018)

    ADS  Google Scholar 

  28. E. Granados et al., Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Opt. Express 25(13), 15330–15335 (2017)

    ADS  Google Scholar 

  29. X.S. Shi, X.F. Xu, Laser fluence dependence of ripple formation on fused silica by femtosecond laser irradiation. Appl. Phys. A Mater. Sci. Process. 125(4), 256 (2019)

    ADS  Google Scholar 

  30. T. Chen et al., Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses. Opt. Mater. 78, 380–387 (2018)

    ADS  Google Scholar 

  31. J.E. Sipe et al., Laser-induced periodic surface structure I. Theory. Phys. Rev. B 27(2), 1141–1154 (1983)

    ADS  MathSciNet  Google Scholar 

  32. L. Gemini et al., Periodic nanostructures self-formed on silicon and silicon carbide by femtosecond laser irradiation. Appl. Phys. A Mater. Sci. Process. 117(1), 49–54 (2014)

    ADS  Google Scholar 

  33. T. Tomita et al., Effect of surface roughening on femtosecond laser-induced ripple structures. Appl. Phys. Lett. 90(15), 153115 (2007)

    ADS  Google Scholar 

  34. M. Yamaguchi et al., Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC. Appl. Phys. A 99(1), 23–27 (2010)

    ADS  Google Scholar 

  35. J. Bonse et al., Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24(4), 042006 (2012)

    ADS  Google Scholar 

  36. C.S. Nathala et al., Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium. Opt. Express 23(5), 5915–5929 (2015)

    ADS  Google Scholar 

  37. S. Hohm et al., Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica. Appl. Phys. Lett. 102(5), 054102 (2013)

    ADS  Google Scholar 

  38. K. Okamuro et al., Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys. Rev. B 82(16), 165417 (2010)

    ADS  Google Scholar 

  39. C.L. Chang, C.W. Cheng, J.K. Chen, Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison. Appl. Surf. Sci. 469, 904–910 (2019)

    ADS  Google Scholar 

  40. Q.Y. Lin et al., The effect of spot overlap ratio on femtosecond laser planarization processing of SiC ceramics. Opt. Laser Technol. 129, 106270 (2020)

    Google Scholar 

  41. K. Sokolowski-Tinten, D. von der Linde, Generation of dense electron-hole plasmas in silicon. Phys. Rev. B 61(4), 2643–2650 (2000)

    ADS  Google Scholar 

  42. T.Y. Choi, C.P. Grigoropoulos, Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon. J. Appl. Phys. 92(9), 4918–4925 (2002)

    ADS  Google Scholar 

  43. I. Gnilitskyi et al., High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Sci. Rep. 7(1), 8485 (2017)

    ADS  Google Scholar 

  44. S. Höhm et al., Femtosecond laser-induced periodic surface structures on silica. J. Appl. Phys. 112(1), 014901 (2012)

    ADS  Google Scholar 

  45. B. Rethfeld et al., Modelling ultrafast laser ablation. J. Phys. D Appl. Phys. 50(19), 193001 (2017)

    ADS  Google Scholar 

  46. S. Schwarz, S. Rung, R. Hellmann, Generation of laser-induced periodic surface structures on transparent material-fused silica. Appl. Phys. Lett. 108(18), 181607 (2016)

    ADS  Google Scholar 

  47. B.C. Stuart et al., Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996)

    ADS  Google Scholar 

  48. L. Jiang et al., Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl. 7(2), 17134 (2018)

    Google Scholar 

  49. B.C. Stuart et al., Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74(12), 2248–2251 (1995)

    ADS  Google Scholar 

  50. A. Galeckas et al., Auger recombination in 4H-SiC: Unusual temperature behavior. Appl. Phys. Lett. 71(22), 3269–3271 (1997)

    ADS  Google Scholar 

  51. D.P. Wan, J. Wang, P. Mathew, Energy deposition and non-thermal ablation in femtosecond laser grooving of silicon. Machin. Sci. Technol. 15(3), 263–283 (2011)

    Google Scholar 

  52. A. Papadopoulos et al., Formation of periodic surface structures on dielectrics after irradiation with laser beams of spatially variant polarisation: a comparative study. Appl. Phys. A Mater. Sci. Process. 124(2), 146 (2018)

    ADS  Google Scholar 

  53. J. Bonse, A. Rosenfeld, J. Kruger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 106(10), 104910 (2009)

    ADS  Google Scholar 

  54. N.T. Son et al., Electron Effective Masses in 4h Sic. Appl. Phys. Lett. 66(9), 1074–1076 (1995)

    ADS  Google Scholar 

  55. V.V. Temnov, Ultrafast Laser Induced Phenomena in Solids Studied by Time Resolved Interferometry. (Verlag nicht ermittelbar, 2004), pp. 83–87

  56. L. Patrick, W.J. Choyke, Optical absorption in n-type cubic SiC. Phys. Rev. 186(3), 775 (1969)

    ADS  Google Scholar 

  57. H. Xue et al., Role of nanoparticles generation in the formation of femtosecond laser-induced periodic surface structures on silicon. Opt. Lett. 42(17), 3315–3318 (2017)

    ADS  Google Scholar 

  58. G. Deng, G. Feng, S. Zhou, Experimental and FDTD study of silicon surface morphology induced by femtosecond laser irradiation at a high substrate temperature. Opt. Express 25(7), 7818–7827 (2017)

    ADS  Google Scholar 

  59. J. Bonse, M. Munz, H. Sturm, Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J. Appl. Phys. 97(1), 013538 (2005)

    ADS  Google Scholar 

  60. A.F. Pan et al., Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses. Mater. Des. 121, 126–135 (2017)

    Google Scholar 

  61. J. Bonse, A. Rosenfeld, J. Kruger, Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures. Appl. Surf. Sci. 257(12), 5420–5423 (2011)

    ADS  Google Scholar 

  62. Y.Z. Hu et al., Femtosecond laser filamentation in air with zero-order pseudo Mathieu beam of different lobes. Opt. Commun. 394, 108–113 (2017)

    ADS  Google Scholar 

  63. T. Zeng et al., Generation of multiple femtosecond laser filaments by using axicon in turbulent air. Laser Phys. 25(8), 085401 (2015)

    ADS  Google Scholar 

  64. J. Bonse, J. Kruger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J. Appl. Phys. 108(3), 034903 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51735010) and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_15R54).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesong Mei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., lin, Q., Li, G. et al. A combined model for formation mechanism of ripples induced by femtosecond laser on silicon carbide. Appl. Phys. A 126, 915 (2020). https://doi.org/10.1007/s00339-020-04004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04004-4

Keywords

Navigation