Skip to main content
Log in

Effect of Left and Right Coronary Flow Waveforms on Aortic Sinus Hemodynamics and Leaflet Shear Stress: Correlation with Calcification Locations

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Coronary flow induces hemodynamic alterations in the aortic sinus region. The objectives of this study are to: (1) investigate the differences among sinus hemodynamics and leaflet wall shear stresses engendered by the left versus right versus non-coronary flow and (2) correlate respective wall shear stresses with leaflet calcification in patients. A left heart simulator flow loop with a tunable coronary circuit provided physiological coronary flow waveforms corresponding to the left coronary cusp case (LCC), right coronary cusp case (RCC), and non-coronary cusp case (NCC). High spatio-temporal resolution particle image velocimetry was conducted to quantify leaflet wall shear stress and sinus vorticity fields and to measure aortic leaflet tip kinematics. Thirty-one patients with severe calcific aortic valve disease were segmented from CT data for the calcific volumes in their respective left, right, and non-coronary cusps. Leaflet tip position during systole shows the RCC has a wider leaflet opening compared to LCC and NCC. Velocity and vorticity fields combined with leaflet position data show that sinus vorticity is diminished (peak ~ 43 s−1) in the LCC while RCC and NCC maintain high vorticity (~ 1200 and ~ 950 s−1 respectively). WSS magnitudes greater than 0.3 Pa show 20 and 81% greater occurrences in the LCC and RCC respectively compared to NCC. Significant differences [X2 (2, n = 31) = 7.31, p = 0.0258] between the calcification levels in each cusp of the patient population. Coronary flow differences between LCC, RCC, and NCC show significant impact on leaflet kinematics and sinus flow hemodynamics. Clinical data correlations of the coronary flow cases indicate the left coronary cusp has a higher likelihood of calcification compared to the right.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bonow, R. O., and P. Greenland. Population-wide trends in aortic stenosis incidence and outcomes. Circulation 131:969–971, 2015.

    Article  Google Scholar 

  2. Butcher, J., C. A. Simmons, and J. Warnock. Review: mechanobiology of the aortic heart valve. J. Heart Valve Dis. 17:62–73, 2008.

    PubMed  Google Scholar 

  3. Chiu, J.-J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 2011. https://doi.org/10.1152/physrev.00047.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Foroutan, F., G. H. Guyatt, K. O’Brien, E. Bain, M. Stein, S. Bhagra, D. Sit, R. Kamran, Y. Chang, T. Devji, H. Mir, V. Manja, T. Schofield, R. A. Siemieniuk, T. Agoritsas, R. Bagur, C. M. Otto, and P. O. Vandvik. Prognosis after surgical replacement with a bioprosthetic aortic valve in patients with severe symptomatic aortic stenosis: systematic review of observational studies. BMJ 2016. https://doi.org/10.1136/bmj.i5065.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Freeman, R. V., and C. M. Otto. Spectrum of calcific aortic valve disease. Pathog. Dis. Prog. Treat. Strateg. 111:3316–3326, 2005.

    Google Scholar 

  6. Gould, S. T., S. Srigunapalan, C. A. Simmons, and K. S. Anseth. Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ. Res. 113:186–197, 2013.

    Article  CAS  Google Scholar 

  7. Hatoum, H., and L. P. Dasi. Spatiotemporal complexity of the aortic sinus vortex as a function of leaflet calcification. Ann. Biomed. Eng. 47(4):1116–1128, 2019.

    Article  Google Scholar 

  8. Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance. Journal of biomechanics 74:171–179, 2018.

    Article  Google Scholar 

  9. Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann. Thorac. Surg. 106(1):70–78, 2018.

    Article  Google Scholar 

  10. Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Sinus hemodynamics variation with tilted transcatheter aortic valve deployments. Ann. Biomed. Eng 47(1):75–84, 2019.

    Article  Google Scholar 

  11. Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 157(2):540–549, 2019.

    Article  Google Scholar 

  12. Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance. J. Biomech. 74:171–179, 2018.

    Article  Google Scholar 

  13. Hatoum, H., P. Maureira, S. Lilly, and L. P. Dasi. Impact of leaflet laceration on transcatheter aortic valve-in-valve washout: BASILICA to solve neosinus and sinus stasis. JACC Cardiovasc. Interv. 12(13):1229–1237, 2019.

    Article  Google Scholar 

  14. Hatoum, H., B. L. Moore, P. Maureira, J. Dollery, J. A. Crestanello, and L. P. Dasi. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 154:32–43, 2017.

    Article  Google Scholar 

  15. James, T. N. Anatomy of the coronary arteries in health and disease. Circulation 32:1020–1033, 1965.

    Article  CAS  Google Scholar 

  16. Johnson, K., P. Sharma, and J. Oshinski. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0t. J. Biomech. 41:595–602, 2008.

    Article  Google Scholar 

  17. Khalique, O. K., R. T. Hahn, H. Gada, T. M. Nazif, T. P. Vahl, I. George, B. Kalesan, M. Forster, M. B. Williams, M. B. Leon, A. J. Einstein, T. C. Pulerwitz, Gregory D. N. Pearson, and S. K. Kodali. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv 7:885–894, 2014.

    Article  Google Scholar 

  18. Krzanowski, M., W. Bodzoń, and P. P. Dimitrow. Imaging of all three coronary arteries by transthoracic echocardiography. An illustrated guide. Cardiovasc Ultrasound 1:16, 2003.

    Article  Google Scholar 

  19. Lei, M., D. P. Giddens, S. A. Jones, F. Loth, and H. Bassiouny. Pulsatile flow in an end-to-side vascular graft model: comparison of computations with experimental data. J. Biomech. Eng. 123:80–87, 2000.

    Article  Google Scholar 

  20. Leopold, J. A. Cellular mechanisms of aortic valve calcification. Circulation 5:605–614, 2012.

    PubMed  Google Scholar 

  21. McCollough, C. H., S. Ulzheimer, S. S. Halliburton, K. Shanneik, R. D. White, and W. A. Kalender. Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT. Radiology. 243(2):527–538, 2007.

    Article  Google Scholar 

  22. Milin, A. C., G. Vorobiof, O. Aksoy, and R. Ardehali. Insights into aortic sclerosis and its relationship with coronary artery disease. J. Am. Heart Assoc. 3:e001111, 2014.

    Article  Google Scholar 

  23. Moore, B., and L. P. Dasi. Spatiotemporal complexity of the aortic sinus vortex. Exp. Fluids 55:1770, 2014.

    Article  Google Scholar 

  24. Moore, B. L., and L. P. Dasi. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Ann. Biomed. Eng. 43:2231–2241, 2015.

    Article  Google Scholar 

  25. Otto, C. M. Calcification of bicuspid aortic valves. Heart 88:321–322, 2002.

    Article  CAS  Google Scholar 

  26. Peacock, J. A. An in vitro study of the onset of turbulence in the sinus of valsalva. Circ. Res. 67:448–460, 1990.

    Article  CAS  Google Scholar 

  27. Piola, M., R. Vismara, G. Tasca, F. Lucherini, P. Redaelli, M. Soncini, C. Romagnoni, A. Mangini, C. Antona, and G. B. Fiore. Design of a simple coronary impedance simulator for the in vitro study of the complex coronary hemodynamics. Physiol. Meas. 37:2274–2285, 2016.

    Article  Google Scholar 

  28. Sankaran, S., M. E. Moghadam, A. M. Kahn, E. E. Tseng, J. M. Guccione, and A. L. Marsden. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann. Biomed. Eng. 40:2228–2242, 2012.

    Article  Google Scholar 

  29. Schäfers, H.-J., W. Schmied, G. Marom, and D. Aicher. Cusp height in aortic valves. J. Thorac. Cardiovasc. Surg. 146:269–274, 2013.

    Article  Google Scholar 

  30. Sluysmans, T., and S. D. Colan. Theoretical and empirical derivation of cardiovascular allometric relationships in children. J. Appl. Physiol. 99(2005):445–457, 1985.

    Google Scholar 

  31. Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial Vcam-1 and Icam-1 in a Bmp-4- and Tgf-Β1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29:254–260, 2009.

    Article  CAS  Google Scholar 

  32. Yap, C. H., N. Saikrishnan, G. Tamilselvan, and A. P. Yoganathan. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech. Model. Mechanobiol. 11:171–182, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health under Award Number 3R01HL118924 and 5R01HL119824 and by the American Heart Association under Award Number.

Conflict of interest

Dr. Dasi reports having a patent application filed on novel polymeric valves. No other conflicts were reported.

Funding

The research done was partly supported by National Institutes of Health (NIH) under Award Number 3R01HL119824 and 5R01HL119824 and by the American Heart Association under award number 19POST34380804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi P. Dasi.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dorma C. Flemister and Hoda Hatoum shared the authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 17286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flemister, D.C., Hatoum, H., Guhan, V. et al. Effect of Left and Right Coronary Flow Waveforms on Aortic Sinus Hemodynamics and Leaflet Shear Stress: Correlation with Calcification Locations. Ann Biomed Eng 48, 2796–2808 (2020). https://doi.org/10.1007/s10439-020-02677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02677-9

Keywords

Navigation