Skip to main content
Log in

Non-compact Quantum Graphs with Summable Matrix Potentials

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Let \(\mathcal {G}\) be a metric non-compact connected graph with finitely many edges. The main object of the paper is the Hamiltonian \(\mathbf{H}_{\alpha }\) associated in \(L^2(\mathcal {G};\mathbb {C}^m)\) with a matrix Sturm–Liouville expression and boundary delta-type conditions at each vertex. Assuming that the potential matrix is summable and applying the technique of boundary triplets and the corresponding Weyl functions, we show that the singular continuous spectrum of the Hamiltonian \(\mathbf{H}_{\alpha }\) as well as any other self-adjoint realization of the Sturm–Liouville expression is empty. We also indicate conditions on the graph ensuring pure absolute continuity of the positive part of \(\mathbf{H}_{\alpha }\). Under an additional condition on the potential matrix, a Bargmann-type estimate for the number of negative eigenvalues of \(\mathbf{H}_{\alpha }\) is obtained. Additionally, for a star graph \(\mathcal {G}\) a formula is found for the scattering matrix of the pair \(\{\mathbf{H}_{\alpha }, \mathbf{H}_D\}\), where \(\mathbf{H}_D\) is the Dirichlet operator on \(\mathcal {G}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Spaces. Monographs and Studies in Mathematics. Pitman, Boston, MA (1981)

    MATH  Google Scholar 

  2. Albeverio, S., Brasche, J.F., Malamud, M.M., Neidhardt, H.: Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions. J. Funct. Anal. 228, 144–188 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, 2nd edn. American Mathematical Society Chelsea Publications, Providence, RI (2005). (With an Appendix by P. Exner)

    MATH  Google Scholar 

  4. Albeverio, S., Kostenko, A.S., Malamud, M.M., Neidhardt, H.: Spherical Schrödinger operators with \(\delta \)-type interactions. J. Math. Phys. 54(5), 052103 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Aronszajn, N.: On a problem of Weyl in the theory of singular Sturm–Liouville equations. Ar. J. Math. 79, 597–610 (1957)

    MathSciNet  MATH  Google Scholar 

  6. Baumgärtel, H., Wollenberg, M.: Mathematical Scattering Theory. Akademie-Verlag, Berlin (1983)

    MATH  Google Scholar 

  7. Behrndt, J., Luger, A.: On the number of negative eigenvalues of the Laplacian on a metric graph. J. Phys. A: Math. Theor. 43(47), 474006 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Behrndt, J., Malamud, M.M., Neidhardt, H.: Scattering matrices and Weyl functions. J. Lond. Math. Soc. 97(3), 568–598 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Behrndt, J., Malamud, M.M., Neidhardt, H.: Scattering matrices and Dirichlet-to-Neumann maps. J. Funct. Anal. 273, 1970–2025 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Berezin, F.A., Shubin, M.A.: The Schrödinger Equation. Mathematics and its Applications (Soviet Series), vol. 66. MA (1991)

  11. Berkolaiko, G., Carlson, R., Fulling, S., Kuchment, P.: Quantum Graphs and Their Applications. Contemporary Mathematics, vol. 415. American Mathematical Society, Providence, RI (2006)

    MATH  Google Scholar 

  12. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monograhs, vol. 186. American Mathematical Society, Providence, RI (2013)

    MATH  Google Scholar 

  13. Berkolaiko, G., Liu, W.: Simplicity of eigenvalues and non-vanishing of eigenfunctions of a quantum graph. J. Math. Anal. Appl. 445(1), 803–818 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Birman, M.S.: On the spectrum of singular boundary-value problems. Mat. Sb. (N.S.), 55(97), 2, 125–174 (1961)

  15. Birman, M.S., Solomjak, M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. D. Reidel Publishing Co., Dordrecht (1987)

    Google Scholar 

  16. Brasche, J.F., Malamud, M.M., Neidhardt, H.: Weyl function and spectral properties of self-adjoint extensions. Integr. Eq. Oper. Theory 43, 264–289 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Breuer, J., Frank, R.: Singular spectrum for radial trees. Rev. Math. Phys. 21(7), 929–945 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Brodskii, M.S.: Triangular and Jordan Representations of Linear Operators. Translations of Mathematics Monographs, vol. 32. American Mathematical Society, Providence, RI (2006)

    Google Scholar 

  19. Colin de Verdiére, Y.: Semi-classical measures on quantum graphs and the Gauss map of the determinant manifold. Ann. Henri Poincaré 16(2), 347–364 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Colin de Verdiére, Y., Truc, F.: Topological resonances on quantum graphs. Ann. Henri Poincaré 19(5), 1419–1438 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Davies, E., Pushnitski, A.: Non-Weyl resonance asymptotics for quantum graphs. J. Anal. PDE 4(5), 729–755 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Derkach, V.A., Malamud, M.M.: Generalised resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95, 1–95 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Derkach, V.A., Malamud, M.M.: The extension theory for Hermitian operators and the moment problem. J. Math. Sci. 73(2), 141–242 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Derkach, V.A., Malamud, M.M.: Extension theory of symmetric operators and boundary value problems. In: Proceedings of Institute of Mathematics of NAS of Ukraine, vol. 104. Institute of Mathematics of NAS of Ukraine, Kiev (2017)

  25. Exner, P., Kostenko, A.S., Malamud, M.M., Neidhardt, H.: Spectral theory of infinite quantum graphs. Ann. Henri Poincaré 19(11), 3457–3510 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Exner, P., Seifert, C., Stollmann, P.: Absence of absolutely continuous spectrum for the Kirchhoff Laplacian on radial trees. Ann. Henri Poincaré 15(6), 1109–1121 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Friedlander, L.: Genericity of simple eigenvalues for a metric graph. Isr. J. Math. 146, 149–156 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Gerasimenko, N.I.: Inverse scattering problem on a noncompact graph. J. Theor. Math. Phys. 75, 460–470 (1988)

    MathSciNet  Google Scholar 

  29. Gerasimenko, N.I., Pavlov, B.S.: Scattering problems on non-compact graphs. J. Theor. Math. Phys. 74(3), 230–240 (1988)

    MATH  Google Scholar 

  30. Gorbachuk, V.I., Gorbachuk, M.L.: Boundary Value Problems for Operator Differential Equations. Mathematics and Its Applications (Soviet Series), vol. 48. Kluwer Academic Publishers Group, Dordrecht (1991)

    MATH  Google Scholar 

  31. Granovskyi, Y.I., Malamud, M.M., Neidhardt, H.: Quantum graphs with summable matrix potentials. Dokl. Math. 100(2), 1–6 (2019)

    MATH  Google Scholar 

  32. Granovskyi, Y., Malamud, M., Neidhardt, H., Posilicano, A.: To the spectral theory of vector-valued Sturm–Liouville operators with summable potentials and point interactions. In: Functional Analysis and Operator Theory for Quantum Physics. Pavel Exner Anniversary V. EMS Series of Congress Reports, vol. 12, pp. 271–313 (2017)

  33. Grubb, G.: A characterization of the non local boundary value problems associated with an elliptic operator. Ann. Scuola Normale Superiore de Pisa 22(3), 425–513 (1968)

    MathSciNet  MATH  Google Scholar 

  34. Kato, T.: Perturbation Theory for Linear Operators. Die Grundlehren der mathemat Wissenschaften, vol. 132, 2nd edn. Springer, Berlin (1966)

    Google Scholar 

  35. Korotyaev, E., Laptev, A.: Trace formulae for Schrödinger operators with complex potentials on cubic lattices. Bull. Math. Sci. 8(3), 453–475 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Korotyaev, E., Saburova, N.: Scattering on periodic metric graphs. Preprint arXiv:1507.06441 (2015)

  37. Kostenko, A., Nicolussi, N.: Quantum graphs on radially symmetric antitrees. J. Spectral Theory. arXiv:1901.05404 (2019)

  38. Krein, M.G.: The theory of self-adjoint extensions of semibounded Hermitian transformations and its applications. I. Sb. Math. 20(3), 431–495 (1947). (in Russian)

    MATH  Google Scholar 

  39. Kuchment, P., Post, O.: On the spectra of carbon nano-structures. J. Commun. Math. Phys. 275(3), 805–826 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Kuchment, P., Zeng, H.: Asymptotics of spectra of Neumann Laplacians in thin domains. J. Contemp. Math. 327, 199–213 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Malamud, M.M.: On the formula of generalized resolvents of a nondensely defined Hermitian operator. Ukr. Mat. Zh. 44(12), 1658–1688 (1992)

    MATH  Google Scholar 

  42. Malamud, M.M.: Spectral theory of elliptic operators in exterior domains. Russ. J. Math. Phys. 17(1), 96–125 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Malamud, M.M.: On singular spectrum of finite-dimensional perturbations (toward the Aronszajn–Donoghue–Kac theory). Dokl. Math. 100(1), 358–362 (2019)

    MATH  Google Scholar 

  44. Malamud, M.M., Mogilevskii, V.I.: Krein type formula for canonical resolvents of dual pairs of linear relations. Methods Funct. Anal. Topol. 8(4), 72–100 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Malamud, M.M., Neidhardt, H.: On the unitary equivalence of absolutely continuous parts of self-adjoint extensions. J. Funct. Anal. 260(3), 613–638 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Malamud, M.M., Neidhardt, H.: Sturm–Liouville boundary value problems with operator potentials and unitary equivalence. J. Differ. Equ. 252, 5875–5922 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Malamud, M., Neidhardt, H.: Perturbation determinants for singular perturbations. Russ. J. Math. Phys. 21(1), 55–98 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Naĭmark, M.A.: Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space. Frederick Ungar Publishing Co., New York (1968)

    MATH  Google Scholar 

  49. Ong, B.-S.: On the Limiting Absorption Principle and Spectra of Quantum Graphs. Quantum Graphs and Their Applications, Contemporary Mathematics, vol. 415, pp. 241–249. American Mathematical Society, Providence, RI (2006)

    Google Scholar 

  50. Pankrashkin, K.: Unitary dimension reduction for a class of self-adjoint extensions with applications to graph-like structures. J. Math. Anal. Appl. 396, 640–655 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Post, O.: Spectral Analysis on Graph-Like Spaces. Lecture Notes in Mathematics 2039. Springer, Berlin (2012)

    MATH  Google Scholar 

  52. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. II. Academic Press, New York (1978)

    MATH  Google Scholar 

  53. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. IV. Academic Press, New York (1980)

    MATH  Google Scholar 

  54. Rofe-Beketov, F.S.: Self-adjoint extensions of differential operators in a space of vector-valued functions. Teor. Funkcii Funkcional. Anal. Prilozh. 8, 3–24 (1969). (in Russian)

    MathSciNet  MATH  Google Scholar 

  55. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations (Part 1). Clarendon Press, Oxford (1946)

    MATH  Google Scholar 

  56. Weidmann, J.: Lineare Operatoren in Hilberträumen. Anwendungen. B.G. Teubner, Stuttgart, Teil II (2003)

  57. Yafaev, D.R.: Mathematical Scattering Theory: General Theory. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to anonymous referees for useful remarks and comments allowing us to improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Malamud.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by the “RUDN University Program 5-100” (M.M.) and by the European Research Council (ERC) under Grant No. AdG 267802 “AnaMultiScale” (H.N.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granovskyi, Y., Malamud, M. & Neidhardt, H. Non-compact Quantum Graphs with Summable Matrix Potentials. Ann. Henri Poincaré 22, 1–47 (2021). https://doi.org/10.1007/s00023-020-00977-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00977-3

Mathematics Subject Classification

Navigation