Skip to main content
Log in

Rapid isolation and determination of bisphenol A in complicated matrices by magnetic molecularly imprinted electrochemical sensing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Because of its widespread distribution in the environment, bisphenol A (BPA) has become a global concern as an endocrine disruptor and a threat to human health through the food chain. Thus an efficient determination method is urgently needed for monitoring the levels of BPA. Herein, a novel electrochemical technique for the detection of BPA was performed by synchronous extraction and pre-concentration of BPA onto magnetic molecularly imprinted polymer (BMMIP), with subsequent readout on a magneto-actuated glassy carbon electrode (MGCE) by differential pulse voltammetry. Compared to the current methods of BPA determination, this BMMIP-based electrochemical sensor (BMMIPs@MGCE) not only simplifies the sample handling procedures substantially, without filtration, centrifugation, or other complex operations, but also can be easily renewed by a controllable magnetic field. As a sensor component, the core–shell BMMIPs exhibited excellent binding capacity (Qe = 82.5 mg g−1), short adsorption equilibrium time (30 s), and outstanding selectivity (k′ = 7.239) towards BPA, as well as stability and recyclability. Importantly, the BMMIPs@MGCE sensor was successfully applied for the on-site monitoring and rapid detection of BPA in complicated real-world specimens, with good recoveries (81.31–119.77%) and a low limit of detection (0.133 μmol L−1). Therefore, the stable and low-cost BMMIPs@MGCE sensor provides a new approach for the rapid determination of BPA in the field of environmental control and food safety.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Björnsdotter MK, de Boer J, Ballesteros-Gómez A. Bisphenol A and replacements in thermal paper: a review. Chemosphere. 2017;182:691–706.

    PubMed  Google Scholar 

  2. Xiao C, Wang L, Zhou Q, Huang X. Hazards of bisphenol A (BPA) exposure: a systematic review of plant toxicology studies. J Hazard Mater. 2020;384:121488.

    CAS  PubMed  Google Scholar 

  3. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect. 2010;118(8):1055–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo R, Du Y, Zheng F, Wang J, Wang Z, Ji R, et al. Bioaccumulation and elimination of bisphenol A (BPA) in the alga Chlorella pyrenoidosa and the potential for trophic transfer to the rotifer Brachionus calyciflorus. Environ Pollut. 2017;227:460–7.

    CAS  PubMed  Google Scholar 

  5. Fu P, Kawamura K. Ubiquity of bisphenol A in the atmosphere. Environ Pollut. 2010;158(10):3138–43.

    CAS  PubMed  Google Scholar 

  6. Kwak JI, Moon J, Kim D, Cui R, An YJ. Determination of the soil hazardous concentrations of bisphenol A using the species sensitivity approach. J Hazard Mater. 2018;344:390–7.

    CAS  PubMed  Google Scholar 

  7. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3–5):204–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yin H, Cui L, Ai S, Fan H, Zhu L. Electrochemical determination of bisphenol A at mg-Al-CO3 layered double hydroxide modified glassy carbon electrode. Electrochim Acta. 2010;55(3):603–10.

    CAS  Google Scholar 

  9. Zhou T, Feng Y, Zhou L, Tao Y, Luo D, Jing T, et al. Selective and sensitive detection of tetrabromobisphenol-A in water samples by molecularly imprinted electrochemical sensor. Sensors Actuators B Chem. 2016;236:153–62.

    CAS  Google Scholar 

  10. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D. Analytical methods for the determination of bisphenol A in food. J Chromatogr A. 2009;1216(3):449–69.

    PubMed  Google Scholar 

  11. Nantaphol S, Chailapakul O, Siangproh W. Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum. Sensors Actuators B Chem. 2015;207:193–8.

    CAS  Google Scholar 

  12. Gao Y, Cao Y, Yang D, Luo X, Tang Y, Li H. Sensitivity and selectivity determination of bisphenol A using SWCNT–CD conjugate modified glassy carbon electrode. J Hazard Mater. 2012;199:111–8.

    PubMed  Google Scholar 

  13. Moreno MJ, D’Arienzo P, Manclús JJ, Montoya Á. Development of monoclonal antibody-based immunoassays for the analysis of bisphenol A in canned vegetables. J Environ Sci Heal B. 2011;46(6):509–17.

    CAS  Google Scholar 

  14. Yin H, Zhou Y, Xu J, Ai S, Cui L, Zhu L. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Anal Chim Acta. 2010;659(1–2):144–50.

    CAS  PubMed  Google Scholar 

  15. Lu YC, Guo MH, Mao JH, Xiong XH, Liu YJ, Li Y. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticle for the rapid and selective enrichment of trace diuron from complicated matrices. Ecotox Environ Safe. 2019;177:66–76.

    CAS  Google Scholar 

  16. Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Electrochemical sensors based on magnetic molecularly imprinted polymers: a review. Anal Chim Acta. 2017;960:1–17.

    PubMed  Google Scholar 

  17. Han Q, Shen X, Zhu W, Zhu C, Zhou X, Jiang H. Magnetic sensing film based on Fe3O4@ au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol. Biosens Bioelectron. 2016;79:180–6.

    CAS  PubMed  Google Scholar 

  18. Lu YC, Mao JH, Zhang W, Wang C, Cao M, Wang XD, et al. A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano−polymers. Chemosphere. 2020;238:124640.

    CAS  PubMed  Google Scholar 

  19. Deng F, Li Y, Luo X, Yang L, Tu X. Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation. Colloid Surface A. 2012;395:183–9.

    Article  CAS  Google Scholar 

  20. Liu B, Tang D, Zhang B, Que X, Yang H, Chen G. Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. Biosens Bioelectron. 2013;41:551–6.

    CAS  PubMed  Google Scholar 

  21. Miao SS, Wu MS, Zuo HG, Jiang C, Jin SF, Lu YC, et al. Core-shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicide residues. J Agric Food Chem. 2015;63(14):3634–45.

    CAS  PubMed  Google Scholar 

  22. Arabi M, Ghaedi M, Ostovan A. Development of a lower toxic approach based on green synthesis of water-compatible molecularly imprinted nanoparticles for the extraction of hydrochlorothiazide from human urine. ACS Sustain Chem Eng. 2017;5(5):3775–85.

    CAS  Google Scholar 

  23. Ji W, Sun R, Duan W, Wang X, Wang T, Mu Y, et al. Selective solid phase extraction of chloroacetamide herbicides from environmental water samples by amphiphilic magnetic molecularly imprinted polymers. Talanta. 2017;170:111–8.

    CAS  PubMed  Google Scholar 

  24. Jiang H, Jiang D, Shao J, Sun X. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones). Biosens Bioelectron. 2016;75:411–9.

    CAS  PubMed  Google Scholar 

  25. Zeng H, Wang Y, Liu X, Kong J, Nie C. Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin. Talanta. 2012;93:172–81.

    CAS  PubMed  Google Scholar 

  26. Hassan AH, Moura SL, Ali FH, Moselhy WA, Sotomayor MDPT, et al. Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer. Biosens Bioelectron. 2018;118:181–7.

    CAS  PubMed  Google Scholar 

  27. Xu L, Pan J, Dai J, Li X, Hang H, Cao Z, et al. Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution. J Hazard Mater. 2012;233:48–56.

    PubMed  Google Scholar 

  28. Abu-Alsoud GF, Hawboldt KA, Bottaro CS. Comparison of four adsorption isotherm models for characterizing molecular recognition of individual phenolic compounds in porous tailor-made molecularly imprinted polymer films. ACS Appl Mater Interfaces. 2020;12(10):11998–2009.

    CAS  PubMed  Google Scholar 

  29. Ji Y, Yin J, Xu Z, Zhao C, Huang H, Zhang H, et al. Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Anal Bioanal Chem. 2009;395(4):1125–33.

    CAS  PubMed  Google Scholar 

  30. Qu Y, Qin L, Liu X, Yang Y. Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere. 2020:126376.

  31. Tian H, Liu T, Mu G, Chen F, He M, You S, et al. Rapid and sensitive determination of trace fluoroquinolone antibiotics in milk by molecularly imprinted polymer-coated stainless steel sheet electrospray ionization mass spectrometry. Talanta. 2020:121282.

  32. Gao R, Kong X, Wang X, He X, Chen L, Zhang Y. Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core-shell magnetic nanoparticles for the recognition and enrichment of protein. J Mater Chem. 2011;21(44):17863–71.

    CAS  Google Scholar 

  33. Huang C, Wu Y, Chen J, Han Z, Wang J, Pan H, et al. Synthesis and Electrocatalytic activity of 3Au-1Pd alloy nanoparticles/graphene composite for bisphenol A detection. Electroanalysis. 2012;24(6):1416–23.

    CAS  Google Scholar 

  34. Pereira GF, Andrade LS, Rocha-Filho RC, Bocchi N, Biaggio SR. Electrochemical determination of bisphenol A using a boron-doped diamond electrode. Electrochim Acta. 2012;82:3–8.

    CAS  Google Scholar 

  35. Gray GM, Cohen JT, Cunha G, Hughes C, McConnell EE, Rhomberg L, et al. Weight of the evidence evaluation of low-dose reproductive and developmental effects of bisphenol A. Hum Ecol Risk Assess. 2004;10(5):875–921.

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Key Research and Development Program of China (2018YFC1602800), National Natural Science Foundation of China (21707070), and Natural Science Foundation of Jiangsu Province in China (BK20170998) are gratefully acknowledged. This work was also supported by the Young Talents Project in Jiangsu Province (2019) and Graduate Research and Innovation Projects of Jiangsu Province (KYCX20_1107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Chen Lu or Xiao Hui Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1187 kb)

ESM 2

(MP4 3205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y.C., Xiao, W.W., Wang, J.Y. et al. Rapid isolation and determination of bisphenol A in complicated matrices by magnetic molecularly imprinted electrochemical sensing. Anal Bioanal Chem 413, 389–401 (2021). https://doi.org/10.1007/s00216-020-03006-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03006-8

Keywords

Navigation