1932

Abstract

Interactions connect the units of ecological systems, forming networks. Individual-based networks characterize variation in niches among individuals within populations. These individual-based networks merge with each other, forming species-based networks and food webs that describe the architecture of ecological communities. Networks at broader spatiotemporal scales portray the structure of ecological interactions across landscapes and over macroevolutionary time. Here, I review the patterns observed in ecological networks across multiple levels of biological organization. A fundamental challenge is to understand the amount of interdependence as we move from individual-based networks to species-based networks and beyond. Despite the uneven distribution of studies, regularities in network structure emerge across scales due to the fundamental architectural patterns shared by complex networks and the interplay between traits and numerical effects. I illustrate the integration of these organizational scales by exploring the consequences of the emergence of highly connected species for network structures across scales.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012220-120819
2020-11-02
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-012220-120819.html?itemId=/content/journals/10.1146/annurev-ecolsys-012220-120819&mimeType=html&fmt=ahah

Literature Cited

  1. Aizen MA, Sabatino M, Tylianakis JM 2012. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335:1486–89
    [Google Scholar]
  2. Albert R, Barabási AL. 2002. Statistical mechanics of complex networks. Rev. Mod. Phys. 74:47–97
    [Google Scholar]
  3. Albouy C, Archambault P, Appeltans W, Araújo MB, Beauchesne D et al. 2019. The marine fish food web is globally connected. Nat. Ecol. Evol. 3:1153–61
    [Google Scholar]
  4. Allesina S, Alonso D, Pascual M 2008. A general model for food web structure. Science 320:658–61
    [Google Scholar]
  5. Allesina S, Tang S. 2012. Stability criteria for complex ecosystems. Nature 483:205–8
    [Google Scholar]
  6. Anthony RG, Estes JA, Ricca MA, Miles AK, Forsman ED 2008. Bald eagles and sea otters in the Aleutian archipelago: indirect effects of trophic cascades. Ecology 89:2725–35
    [Google Scholar]
  7. Araújo MS, Bolnick DI, Layman CA 2011. The ecological causes of individual specialization. Ecol. Lett. 14:9948–58
    [Google Scholar]
  8. Araújo MS, Guimarães PR, Svanbäck R, Pinheiro A, Guimarães P et al. 2008. Network analysis reveals contrasting effects of intraspecific competition on individual versus population diets. Ecology 89:1981–93
    [Google Scholar]
  9. Atmar W, Patterson BD. 1993. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–82
    [Google Scholar]
  10. Baiser B, Elhesha R, Kahveci T 2016. Motifs in the assembly of food web networks. Oikos 125:480–91
    [Google Scholar]
  11. Baiser B, Gravel D, Cirtwill AR, Dunne JA, Fahimipour AK et al. 2019. Ecogeographical rules and the macroecology of food webs. Glob. Ecol. Biogeogr. 28:1204–18
    [Google Scholar]
  12. Bartley TJ, McCann KS, Bieg C, Cazelles K, Granados M et al. 2019. Food web rewiring in a changing world. Nat. Ecol. Evol. 3:345–54
    [Google Scholar]
  13. Bascompte J, Jordano P, Melián CJ, Olesen JM 2003. The nested assembly of plant-animal mutualistic networks. PNAS 100:9383–87
    [Google Scholar]
  14. Bascompte J, Jordano P, Olesen JM 2006. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–33
    [Google Scholar]
  15. Baskerville EB, Dobson AP, Bedford T, Allesina S, Anderson TM, Pascual M 2011. Spatial guilds in the Serengeti food web revealed by a Bayesian group model. PLOS Comput. Biol. 7:e1002321
    [Google Scholar]
  16. Benkman CW. 1999. The selection mosaic and diversifying coevolution between crossbills and lodgepole pine. Am. Nat. 153:S75–91
    [Google Scholar]
  17. Benkman CW. 2013. Biotic interaction strength and the intensity of selection. Ecol. Lett. 16:81054–60
    [Google Scholar]
  18. Berg R. 1960. The ecological significance of correlation pleiades. Evolution 14:171–80
    [Google Scholar]
  19. Blüthgen N, Fründ J, Vázquez DP, Menzel F 2008. What do interaction network metrics tell us about specialization and biological traits. ? Ecology 89:3387–99
    [Google Scholar]
  20. Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N 2007. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 17:4341–46
    [Google Scholar]
  21. Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM et al. 2011. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26:183–92
    [Google Scholar]
  22. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM et al. 2003. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161:1–28
    [Google Scholar]
  23. Borrett SR, Fath BD, Patten Bernard C 2007. Functional integration of ecological networks through pathway proliferation. J. Theor. Biol. 245:198–111
    [Google Scholar]
  24. Braga J, Pollock LJ, Barros C, Galiana N, Montoya JM et al. 2019. Spatial analyses of multi‐trophic terrestrial vertebrate assemblages in Europe. Glob. Ecol. Biogeogr. 28:111636–48
    [Google Scholar]
  25. Braga MP, Guimarães PR, Wheat CW, Nylin S, Janz N 2018. Unifying host-associated diversification processes using butterfly-plant networks. Nat. Commun 9:5155
    [Google Scholar]
  26. Brose U, Archambault P, Barnes AD, Bersier L-F, Boy T et al. 2019. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3:919–27
    [Google Scholar]
  27. Buck JC. 2019. Indirect effects explain the role of parasites in ecosystems. Trends Parasitol 35:10835–47
    [Google Scholar]
  28. Bush AM, Bambach RK. 2011. Paleoecologic megatrends in marine metazoa. Annu. Rev. Earth Planet. Sci. 39:241–69
    [Google Scholar]
  29. Cagnolo L. 2018. The future of ecological networks in the tropics. Ecological Networks in the Tropics W Dáttilo, V Rico-Gray 171–83 Cham, Switz: Springer
    [Google Scholar]
  30. Cantor M, Simões-Lopes PC, Daura-Jorge FG 2018. Spatial consequences for dolphins specialized in foraging with fishermen. Anim. Behav. 139:19–27
    [Google Scholar]
  31. Carey CC, Brown BL, Cottingham KL 2017. The cyanobacterium Gloeotrichia echinulata increases the stability and network complexity of phytoplankton communities. Ecosphere 8:e01830
    [Google Scholar]
  32. Carlo TA, Yang S. 2011. Network models of frugivory and seed dispersal: challenges and opportunities. Acta Oecol 37:619–24
    [Google Scholar]
  33. Chacoff NP, Resasco J, Vázquez DP 2018. Interaction frequency, network position, and the temporal persistence of interactions in a plant–pollinator network. Ecology 99:21–28
    [Google Scholar]
  34. Chamberlain S, Vázquez DP, Carvalheiro L, Elle E, Vamosi JC 2014. Phylogenetic tree shape and the structure of mutualistic networks. J. Ecol. 102:1234–43
    [Google Scholar]
  35. Cohen JE. 1977. Food webs and dimensionality of trophic niche space. PNAS 74:4533–36
    [Google Scholar]
  36. Costa LF, Rodrigues FA, Travieso G, Villas Boas PR 2007. Characterization of complex networks: a survey of measurements. Adv. Phys. 56:167–242
    [Google Scholar]
  37. Crestani AC, Mello MAR, Cazetta E 2019. Interindividual variations in plant and fruit traits affect the structure of a plant-frugivore network. Acta Oecol 95:120–27
    [Google Scholar]
  38. Dalerum F, Hellström P, Miranda M, Nyström J, Ekenstedt J, Angerbjörn A 2016. Network topology of stable isotope interactions in a sub-arctic raptor guild. Oecologia 182:511–18
    [Google Scholar]
  39. Dáttilo W, Díaz-Castelazo C, Rico-Gray V 2014a. Ant dominance hierarchy determines the nested pattern in ant-plant networks. Biol. J. Linn. Soc. 113:405–14
    [Google Scholar]
  40. Dáttilo W, Fagundes R, Gurka CAQ, Silva MSA, Vieira MCL et al. 2014b. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship. PLOS ONE 9:e99838
    [Google Scholar]
  41. Dáttilo W, Lara-Rodríguez N, Jordano P, Guimarães PR, Thompson JN et al. 2016. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proc. R. Soc. B 283:20161564
    [Google Scholar]
  42. Dehling DM, Jordano P, Schaefer HM, Böhning-Gaese K, Schleuning M 2016. Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions. Proc. R. Soc. B 283:20152444
    [Google Scholar]
  43. Dobson A. 2009. Food-web structure and ecosystem services: insights from the Serengeti. Philos. Trans. R. Soc. B 364:1665–82
    [Google Scholar]
  44. Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R 2011. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol. Lett. 14:773–81
    [Google Scholar]
  45. Donoso I, Sorensen MC, Blendinger PG, Kissling WD, Neuschulz EL et al. 2020. Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nat. Commun. 11:1582
    [Google Scholar]
  46. Dormann CF, Fründ J, Schaefer HM 2017. Identifying causes of patterns in ecological networks: opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48:559–84
    [Google Scholar]
  47. Drossel B, Higgs PG, McKane AJ 2001. The influence of predator-prey population dynamics on the long-term evolution of food web structure. J. Theor. Biol. 208:91–107
    [Google Scholar]
  48. Dunne JA, Williams RJ, Martinez ND, Wood RA, Erwin DH 2008. Compilation and network analyses of Cambrian food webs. PLOS Biol 6:e102
    [Google Scholar]
  49. Dupont YL, Trøjelsgaard K, Olesen JM 2011. Scaling down from species to individuals: a flower-visitation network between individual honeybees and thistle plants. Oikos 120:170–77
    [Google Scholar]
  50. Eddington AS 1939. The Philosophy of Physical Science Cambridge, UK: Univ. Cambridge Press, 1st ed..
  51. Eklöf A, Helmus MR, Moore M, Allesina S 2011. Relevance of evolutionary history for food web structure. Proc. R. Soc. B 279:1588–96
    [Google Scholar]
  52. Elton CS. 2001. 1927. Animal Ecology Chicago: Univ. Chicago Press
  53. Emer C, Galetti M, Pizo MA, Jordano P, Verdú M 2019. Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. Sci. Adv. 5:6eaav6699
    [Google Scholar]
  54. Eriksson O. 2016. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biol. Rev. 91:168–86
    [Google Scholar]
  55. Estes JA, Palmisano JF. 1974. Sea otters: their role in structuring nearshore communities. Science 185:1058–60
    [Google Scholar]
  56. Estes JA, Riedman ML, Staedler MM, Tinker MT, Lyon BE 2003. Individual variation in prey selection by sea otters: patterns, causes and implications. J. Anim. Ecol. 72:144–55
    [Google Scholar]
  57. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J et al. 2011. Trophic downgrading of Planet Earth. Science 333:6040301–6
    [Google Scholar]
  58. Eurich JG, McCormick MI, Jones GP 2018. Direct and indirect effects of interspecific competition in a highly partitioned guild of reef fishes. Ecosphere 9:e02389
    [Google Scholar]
  59. Evans DM, Pocock MJO, Memmott J 2013. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16:844–52
    [Google Scholar]
  60. Fodor E. 2011. Ecological niche of plant pathogens. Ann. For. Res. 54:3–21
    [Google Scholar]
  61. Fonseca CR, Ganade G. 1996. Asymmetries, compartments and null interactions in an Amazonian ant-plant community. J. Anim. Ecol. 65:339–47
    [Google Scholar]
  62. Fontaine C, Guimarães PR, Kéfi S, Loeuille N, Memmott J et al. 2011. The ecological and evolutionary implications of merging different types of networks. Ecol. Lett. 14:1170–81
    [Google Scholar]
  63. Fontoura L, Cantor M, Longo GO, Bender MG, Bonaldo RM, Floeter SR 2020. The macroecology of reef fish agonistic behaviour. Ecography 43:127890
    [Google Scholar]
  64. Fort H, Vázquez DP, Lan BL 2016. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19:4–11
    [Google Scholar]
  65. Fortuna MA, Popa-Lisseanu G, Ibáñez C, Bascompte J 2009. The roosting spatial network of a bird-predator bat. Ecology 90:934–44
    [Google Scholar]
  66. Freilich MA, Wieters E, Broitman BR, Marquet PA, Navarrete SA 2018. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities. ? Ecology 99:690–99
    [Google Scholar]
  67. Galetti M, Pizo MA. 1996. Fruit eating by birds in a forest fragment in southeastern Brazil. Ararajuba 4:71–79
    [Google Scholar]
  68. Galiana N, Lurgi M, Claramunt-López B, Fortin MJ, Leroux S et al. 2018. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2:782–90
    [Google Scholar]
  69. García-Callejas D, Molowny-Horas R, Araújo MB 2018. Multiple interactions networks: towards more realistic descriptions of the web of life. Oikos 127:5–22
    [Google Scholar]
  70. García-Callejas D, Molowny-Horas R, Araújo MB, Gravel D 2019. Spatial trophic cascades in communities connected by dispersal and foraging. Ecology 100:e02820
    [Google Scholar]
  71. Gibert JP, DeLong JP. 2017. Phenotypic variation explains food web structural patterns. PNAS 114:4211187–92
    [Google Scholar]
  72. Gibert JP, Yeakel JD. 2019. Eco-evolutionary origins of diverse abundance, biomass, and trophic structures in food webs. Front. Ecol. Evol. 7:15
    [Google Scholar]
  73. Gilarranz LJ, Rayfield B, Liñán-Cembrano G, Bascompte J, González A 2017. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357:199–201
    [Google Scholar]
  74. Gómez JM, Perfectti F. 2012. Fitness consequences of centrality in mutualistic individual-based networks. Proc. R. Soc. B 279:1754–60
    [Google Scholar]
  75. Gómez JM, Perfectti F, Jordano P 2011. The functional consequences of mutualistic network architecture. PLOS ONE 6:e16143
    [Google Scholar]
  76. Gómez JM, Verdú M, Perfectti F 2010. Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465:918–21
    [Google Scholar]
  77. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B et al. 2018. Microbiome interactions shape host fitness. PNAS 115:E11951–60
    [Google Scholar]
  78. Gravel D, Albouy C, Thuiller W 2016. The meaning of functional trait composition of food webs for ecosystem functioning. Phil. Trans. R. Soc. B 371:169420150268
    [Google Scholar]
  79. Gravel D, Baiser B, Dunne JA, Kopelke JP, Martinez ND et al. 2018. Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography 42:401–15
    [Google Scholar]
  80. Gravel D, Massol F, Canard E, Mouillot D, Mouquet N 2011. Trophic theory of island biogeography. Ecol. Lett. 14:1010–16
    [Google Scholar]
  81. Gross T, Rudolf L, Levin SA, Dieckmann U 2009. Generalized models reveal stabilizing factors in food webs. Science 325:5941747–50
    [Google Scholar]
  82. Guimarães PR, Jordano P, Thompson JN. 2011. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14:877–85
    [Google Scholar]
  83. Guimarães PR, Pires MM, Jordano P, Bascompte J, Thompson JN. 2017. Indirect effects drive coevolution in mutualistic networks. Nature 550:511–14
    [Google Scholar]
  84. Guimarães PR, Rico-Gray V, Oliveira PS, Izzo TJ, dos Reis SF, Thompson JN. 2007. Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr. Biol. 17:1797–803
    [Google Scholar]
  85. Guimerà R, Stouffer DB, Sales-Pardo M, Leicht EA, Newman MEJ, Amaral LAN 2010. Origin of compartmentalization in food webs. Ecology 91:2941–51
    [Google Scholar]
  86. Hale KRS, Valdovinos FS, Martinez ND 2020. Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs. Nat. Commun. 11:2182
    [Google Scholar]
  87. Hannon BM. 1973. The structure of ecosystems. J. Theor. Biol. 41:3535–46
    [Google Scholar]
  88. Harmon LJ, Andreazzi CS, Débarre F, Drury J, Goldberg EE et al. 2019. Detecting the macroevolutionary signal of species interactions. J. Evol. Biol. 32:769–82
    [Google Scholar]
  89. Herrera CM. 1986. Vertebrate-dispersed plants: Why they don't behave the way they should. Frugivores and Seed Dispersal A Estrada, TH Fleming 5–18 Dordrecht, Neth: Springer
    [Google Scholar]
  90. Holland JN, Ness JH, Boyle AL, Bronstein JL 2005. Mutualisms as consumer-resource interactions. Ecology of Predator-Prey Interactions P Barbosa, I Castellanos 17–33 New York: Oxford Univ. Press
    [Google Scholar]
  91. Ibáñez S, Arène F, Lavergne S 2016. How phylogeny shapes the taxonomic and functional structure of plant–insect networks. Oecologia 180:989–1000
    [Google Scholar]
  92. Jordán F, Benedek Z, Podani J 2007. Quantifying positional importance in food webs: a comparison of centrality indices. Ecol. Model. 205:270–75
    [Google Scholar]
  93. Jordano P, Bascompte J, Olesen JM 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett. 6:69–81
    [Google Scholar]
  94. Kaiser-Bunbury CN, Mougal J, Whittington AE, Valentin T, Gabriel R et al. 2017. Ecosystem restoration strengthens pollination network resilience and function. Nature 542:223–27
    [Google Scholar]
  95. Kauffman SA, Johnsen S. 1991. Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. J. Theor. Biol. 149:467–505
    [Google Scholar]
  96. Kéfi S, Miele V, Wieters EA, Navarrete SA, Berlow EL 2016. How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLOS Biol 14:e1002527
    [Google Scholar]
  97. Kissling WD, Schleuning M. 2015. Multispecies interactions across trophic levels at macroscales: retrospective and future directions. Ecography 38:346–57
    [Google Scholar]
  98. Kondoh M. 2003. Foraging adaptation and the relationship between food-web complexity and stability. Science 299:1388–91
    [Google Scholar]
  99. Krasnov BR, Fortuna MA, Mouillot D, Khokhlova IS, Shenbrot GI, Poulin R 2012. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am. Nat. 179:501–11
    [Google Scholar]
  100. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW 2003. Compartments revealed in food-web structure. Nature 426:282–85
    [Google Scholar]
  101. Krishna A, Guimarães PR, Jordano P, Bascompte J 2008. A neutral-niche theory of nestedness in mutualistic networks. Oikos 117:1609–18
    [Google Scholar]
  102. Layeghifard M, Li H, Wang PW, Donaldson SL, Coburn B et al. 2019. Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations. npj Biofilms Microbiomes 5:4
    [Google Scholar]
  103. Lemos-Costa P, Pires MM, Araújo MS, de Aguiar MAM, Guimarães PR 2016. Network analyses support the role of prey preferences in shaping resource use patterns within five animal populations. Oikos 125:492–501
    [Google Scholar]
  104. Lerner HRL, Meyer M, James HF, Fleischer RC 2011. Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian Honeycreepers. Curr. Biol. 21:1838–44
    [Google Scholar]
  105. Levin SA. 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73:1943–67
    [Google Scholar]
  106. Lewinsohn TM, Inácio Prado P, Jordano P, Bascompte J, Olesen JM 2006. Structure in plant-animal interaction assemblages. Oikos 113:174–84
    [Google Scholar]
  107. Li HD, Tang L, Jia C, Holyoak M, Fründ J et al. 2020. The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird–plant frugivory networks. Ecol. Lett. 23:81252–62
    [Google Scholar]
  108. Loeuille N. 2010. Influence of evolution on the stability of ecological communities. Ecol. Lett. 13:121536–45
    [Google Scholar]
  109. Loeuille N, Loreau M. 2005. Evolutionary emergence of size-structured food webs. PNAS 102:5761–66
    [Google Scholar]
  110. MacArthur R. 1955. Fluctuations of animal populations and a measure of community stability. Ecology 36:533–36
    [Google Scholar]
  111. MacArthur R, Levins R. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101:377–85
    [Google Scholar]
  112. Margalef R. 1963. On certain unifying principles in ecology. Am. Nat. 97:357–74
    [Google Scholar]
  113. Marshall AJ, Boyko CM, Feilen KL, Boyko RH, Leighton M 2009. Defining fallback foods and assessing their importance in primate ecology and evolution. Am. J. Phys. Anthropol. 140:603–14
    [Google Scholar]
  114. Martín-González AM, Dalsgaar B, Olesen JM 2010. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7(136–43
    [Google Scholar]
  115. May RM. 1972. Will a large complex system be stable. ? Nature 238:413–14
    [Google Scholar]
  116. McCann K, Hastings A, Huxel GR 1998. Weak trophic interactions and the balance of nature. Nature 395:794–98
    [Google Scholar]
  117. McPeek MA. 2019. Limiting similarity? The ecological dynamics of natural selection among resources and consumers caused by both apparent and resource competition. Am. Nat. 193:E92–115
    [Google Scholar]
  118. Melián CJ, Bascompte J. 2004. Food web cohesion. Ecology 85:352–58
    [Google Scholar]
  119. Melián CJ, Bascompte J, Jordano P, Krivan V 2009. Diversity in a complex ecological network with two interaction types. Oikos 118:122–30
    [Google Scholar]
  120. Melián CJ, Matthews B, de Andreazzi CS, Rodríguez JP, Harmon LJ, Fortuna MA 2018. Deciphering the interdependence between ecological and evolutionary networks. Trends Ecol. Evol. 33:504–12
    [Google Scholar]
  121. Melián CJ, Vilas C, Baldó F, González-Ortegón E, Drake P, Williams RJ 2011. Eco-evolutionary dynamics of individual-based food webs. Adv. Ecol. Res. 45:225–68
    [Google Scholar]
  122. Mello MAR, Felix GM, Pinheiro RB, Muylaert RL, Geiselman C et al. 2019. Insights into the assembly rules of a continent-wide multilayer network. Nat. Ecol. Evol. 3:1525–32
    [Google Scholar]
  123. Memmott J, Waser NM, Price MV 2004. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271:2605–11
    [Google Scholar]
  124. Mendoza M, Araújo MB. 2019. Climate shapes mammal community trophic structures and humans simplify them. Nat. Commun. 10:5197
    [Google Scholar]
  125. Meysman FJR, Bruers S. 2010. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Philos. Trans. R. Soc. B 365:15451405–16
    [Google Scholar]
  126. Michalska-Smith MJ, Allesina S. 2019. Telling ecological networks apart by their structure: a computational challenge. PLOS Comput. Biol. 15:e1007076
    [Google Scholar]
  127. Montoya JM, Solé RV. 2002. Small world patterns in food webs. J. Theor. Biol. 214:405–12
    [Google Scholar]
  128. Mora BB, Gravel D, Gilarranz LJ, Poisot T, Stouffer DB 2018. Identifying a common backbone of interactions underlying food webs from different ecosystems. Nat. Commun. 9:2603
    [Google Scholar]
  129. Mougi A, Kondoh M. 2012. Diversity of interaction types and ecological community stability. Science 337:349–51
    [Google Scholar]
  130. Naisbit RE, Rohr RP, Rossberg AG, Kehrli P, Bersier LF 2012. Phylogeny versus body size as determinants of food web structure. Proc. R. Soc. B 279:3291–97
    [Google Scholar]
  131. Neutel A-M, Heesterbeek JAP, de Ruiter PC 2002. Stability in real food webs: weak links in long loops. Science 296:1120–23
    [Google Scholar]
  132. Newman ME, Strogatz SH, Watts DJ 2001. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64:026118
    [Google Scholar]
  133. Niquil N, Haraldsson M, Sime-Ngando T, Huneman P, Borrett SR 2020. Shifting levels of ecological network's analysis reveals different system properties. Philos. Trans. R. Soc. B 375:179620190326
    [Google Scholar]
  134. Novak M, Yeakel JD, Noble AE, Doak DF, Emmerson M et al. 2016. Characterizing species interactions to understand press perturbations: What is the community matrix. ? Annu. Rev. Ecol. Evol. Syst. 47:409–32
    [Google Scholar]
  135. Nuismer SL, Harmon LJ. 2014. Predicting rates of interspecific interaction from phylogenetic trees. Ecol. Lett. 18:17–27
    [Google Scholar]
  136. Odum HT. 1960. Ecological potential and analogue circuits for the ecosystem. Am. Sci. 48:1–8
    [Google Scholar]
  137. Olesen JM, Bascompte J, Dupont YL, Elberling H, Rasmussen C, Jordano P 2011a. Missing and forbidden links in mutualistic networks. Proc. R. Soc. B 278:725–32
    [Google Scholar]
  138. Olesen JM, Bascompte J, Dupont YL, Jordano P 2006. The smallest of all worlds: pollination networks. J. Theor. Biol. 240:270–76
    [Google Scholar]
  139. Olesen JM, Bascompte J, Dupont YL, Jordano P 2007. The modularity of pollination networks. PNAS 104:19891–96
    [Google Scholar]
  140. Olesen JM, Bascompte J, Elberling H, Jordano P 2008. Temporal dynamics in a pollination network. Ecology 89:1573–82
    [Google Scholar]
  141. Olesen JM, Stefanescu C, Traveset A 2011b. Strong, long-term temporal dynamics of an ecological network. PLOS ONE 6:e26455
    [Google Scholar]
  142. Olff H, Alonso D, Berg MP, Klemens Eriksson B, Loreau M et al. 2009. Parallel ecological networks in ecosystems. Philos. Trans. R. Soc. B 364:15241755–79
    [Google Scholar]
  143. Ollerton J. 2006.. “ Biological barter”: patterns of specialization compared across different mutualisms. Plant–Pollinator Interactions: From Specialization to Generalization NM Waser, J Ollerton 411–35 Chicago: Univ. Chicago Press
    [Google Scholar]
  144. Ollerton J, McCollin D, Fautin DG, Allen GR 2007. Finding NEMO: nestedness engendered by mutualistic organization in anemonefish and their hosts. Proc. R. Soc. B 274:591–98
    [Google Scholar]
  145. Owen-Smith N, Mills MGL. 2008. Predator–prey size relationships in an African large-mammal food web. J. Anim. Ecol. 77:173–83
    [Google Scholar]
  146. Paine RT. 1966. Food web complexity and species diversity. Am. Nat. 100:65–75
    [Google Scholar]
  147. Pascual M, Dunne JA. 2006. Ecological Networks: Linking Structure to Dynamics in Food Webs New York: Oxford Univ. Press
  148. Pfaender J, Schliewen UK, Herder F 2010. Phenotypic traits meet patterns of resource use in the radiation of “sharpfin” sailfin silverside fish in Lake Matano. Evol. Ecol. 24:957–74
    [Google Scholar]
  149. Pilosof S, Fortuna MA, Cosson J-F, Galan M, Kittipong C et al. 2014. Host-parasite network structure is associated with community-level immunogenetic diversity. Nat. Commun. 5:5172
    [Google Scholar]
  150. Pilosof S, Porter MA, Pascual M, Kéfi S 2017. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1:0101
    [Google Scholar]
  151. Pimm SL, Lawton JH. 1977. Number of trophic levels in ecological communities. Nature 268:329–31
    [Google Scholar]
  152. Pimm SL, Lawton JH. 1980. Are food webs divided into compartments. ? J. Anim. Ecol. 49:879–98
    [Google Scholar]
  153. Pinheiro RBP, Felix GMF, Dormann CF Mello MAR 2019. A new model explaining the origin of different topologies in interaction networks. Ecology 100:e02796
    [Google Scholar]
  154. Pires MM, Guimarães PR. 2013. Interaction intimacy organizes networks of antagonistic interactions in different ways. J. R. Soc. Interface 10:1020120649
    [Google Scholar]
  155. Poisot T, Stanko M, Miklisová D, Morand S 2013. Facultative and obligate parasite communities exhibit different network properties. Parasitology 140:1340–45
    [Google Scholar]
  156. Poisot T, Stouffer DB, Gravel D 2014. Beyond species: why ecological interaction networks vary through space and time. Oikos 124:243–51
    [Google Scholar]
  157. Polis GA, Power ME, Huxel GR 2004. Food Webs at the Landscape Level Chicago: Univ. Chicago Press
  158. Ponisio LC, Gaiarsa MP, Kremen C 2017. Opportunistic attachment assembles plant-pollinator networks. Ecol. Lett. 20:1261–72
    [Google Scholar]
  159. Pornon A, Andalo C, Burrus M, Escaravage N 2017. DNA metabarcoding data unveils invisible pollination networks. Sci. Rep. 7:16828
    [Google Scholar]
  160. Post DM. 2002. The long and short of food-chain length. Trends Ecol. Evol. 17:6269–77
    [Google Scholar]
  161. Poulin R. 2010. Network analysis shining light on parasite ecology and diversity. Trends Parasitol 26:10492–98
    [Google Scholar]
  162. Poulin R, Krasnov BR, Pilosof S, Thieltges DW 2013. Phylogeny determines the role of helminth parasites in intertidal food webs. J. Anim. Ecol. 82:1265–75
    [Google Scholar]
  163. Powell EC, Taylor LA. 2017. Specialists and generalists coexist within a population of spider-hunting mud dauber wasps. Behav. Ecol. 28:890–98
    [Google Scholar]
  164. Power ME, Tilman D, Estes JA, Menge BA, Bond WJ et al. 1996. Challenges in the quest for keystones. Bioscience 46:609–20
    [Google Scholar]
  165. Prado PI, Lewinsohn TM. 2004. Compartments in insect-plant associations and their consequences for community structure. J. Anim. Ecol. 73:1168–78
    [Google Scholar]
  166. Preston FW. 1948. The commonness, and rarity, of species. Ecology 29:3254–83
    [Google Scholar]
  167. Price PW. 1980. The Evolutionary Biology of Parasites Princeton, NJ: Princeton Univ. Press
  168. Provencher JF, Elliott KH, Gaston AJ, Braune BM 2013. Networks of prey specialization in an Arctic monomorphic seabird. J. Avian Biol. 44:551–60
    [Google Scholar]
  169. Qian JJ, Akçay E. 2020. The balance of interaction types determines the assembly and stability of ecological communities. Nat. Ecol. Evol. 4:356–65
    [Google Scholar]
  170. Raffaelli D, Hall SJ. 1992. Compartments and predation in an estuarine food web. J. Anim. Ecol. 61:551–60
    [Google Scholar]
  171. Ramos-Jiliberto R, Valdovinos FS, Arias J, Alcaraz C, García-Berthou E 2011. A network-based approach to the analysis of ontogenetic diet shifts: an example with an endangered, small-sized fish. Ecol. Complex. 8:123–29
    [Google Scholar]
  172. Rezende EL, Albert EM, Fortuna MA, Bascompte J 2009. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12:779–88
    [Google Scholar]
  173. Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–28
    [Google Scholar]
  174. Rooney N, McCann K, Gellner G, Moore JC 2006. Structural asymmetry and the stability of diverse food webs. Nature 442:265–69
    [Google Scholar]
  175. Santamaría L, Rodríguez-Gironés MA. 2007. Linkage rules for plant-pollinator networks: trait complementarity or exploitation barriers. ? PLOS Biol 5:e31
    [Google Scholar]
  176. Schleuning M, Fründ J, Klein AM, Abrahamczyk S, Alarcón R et al. 2012. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Biol. 22:201925–31
    [Google Scholar]
  177. Schleuning M, Ingmann L, Strauß R, Fritz SA, Dalsgaard B et al. 2014. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol. Lett. 17:4454–63
    [Google Scholar]
  178. Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA et al. 2020. Giant virus diversity and host interactions through global metagenomics. Nature 578:7795432–36
    [Google Scholar]
  179. Schwarz B, Vázquez DP, CaraDonna PJ, Knight TM, Benadi G et al. 2020. Temporal scale-dependence of plant-pollinator networks. Oikos 129:1289302
    [Google Scholar]
  180. Segar ST, Fayle TM, Srivastava DS, Lewinsohn TM, Lewis OT et al. 2020. The role of evolution in shaping ecological networks. Trends Ecol. Evol. 35:454–66
    [Google Scholar]
  181. Silvestro D, Antonelli A, Salamin N, Quental TB 2015. The role of clade competition in the diversification of North American canids. PNAS 112:8684–89
    [Google Scholar]
  182. Sinclair ARE, Mduma S, Brashares JS 2003. Patterns of predation in a diverse predator–prey system. Nature 425:288–90
    [Google Scholar]
  183. Solé RV, Montoya JM. 2001. Complexity and fragility in ecological networks. Proc. R. Soc. B 268:2039–45
    [Google Scholar]
  184. Song C, Saavedra S. 2020. Telling ecological networks apart by their structure: an environment-dependent approach. PLOS Comput. Biol. 16:e1007787
    [Google Scholar]
  185. Sonne J, Vizentin-Bugoni J, Maruyama PK, Araújo AC, Chávez-González E et al. 2020. Ecological mechanisms explaining interactions within plant–hummingbird networks: Morphological matching increases towards lower latitudes. Proc. R. Soc. B 287:20192873
    [Google Scholar]
  186. Staniczenko PPA, Kopp JC, Allesina S 2013. The ghost of nestedness in ecological networks. Nat. Commun. 4:1391
    [Google Scholar]
  187. Start D, Weis AE, Gilbert B 2019. Indirect interactions shape selection in a multispecies food web. Am. Nat. 193:321–30
    [Google Scholar]
  188. Stella M, Selakovic S, Antonioni A, Andreazzi CS 2018. Ecological multiplex interactions determine the role of species for parasite spread amplification. eLife 7:e32814
    [Google Scholar]
  189. Stouffer DB. 2010. Scaling from individuals to networks in food webs. Funct. Ecol. 24:44–51
    [Google Scholar]
  190. Stouffer DB, Camacho J, Amaral LAN 2006. A robust measure of food web intervality. PNAS 103:19015–20
    [Google Scholar]
  191. Stouffer DB, Sales-Pardo M, Sirer MI, Bascompte J 2012. Evolutionary conservation of species' roles in food webs. Science 335:1489–92
    [Google Scholar]
  192. Thompson AR, Adam TC, Hultgren KM, Thacker CE 2013. Ecology and evolution affect network structure in an intimate marine mutualism. Am. Nat. 182:E58–72
    [Google Scholar]
  193. Thompson JN. 1988. Variation in interspecific interactions. Annu. Rev. Ecol. Syst. 19:65–87
    [Google Scholar]
  194. Thompson JN. 1994. The Coevolutionary Process Chicago: Univ. Chicago Press
  195. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press
  196. Timóteo S, Correia M, Rodríguez-Echeverría S, Freitas H, Heleno R 2018. Multilayer networks reveal the spatial structure of seed-dispersal interactions across the Great Rift landscapes. Nat. Commun. 9:140
    [Google Scholar]
  197. Tinker MT, Guimarães PR Jr, Novak M, Marquitti FMD, Bodkin JL et al. 2012. Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecol. Lett. 15:475–83
    [Google Scholar]
  198. Trøjelsgaard K, Heleno R, Traveset A 2019. Native and alien flower visitors differ in partner fidelity and network integration. Ecol. Lett. 22:1264–73
    [Google Scholar]
  199. Tscharntke T, Vidal S, Hawkins BA 2001. Parasitoids of grass-feeding chalcid wasps: a comparison of German and British communities. Oecologia 129:445–51
    [Google Scholar]
  200. Tur C, Olesen JM, Traveset A 2015. Increasing modularity when downscaling networks from species to individuals. Oikos 124:581–92
    [Google Scholar]
  201. Tylianakis JM, Morris RJ. 2017. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48:25–48
    [Google Scholar]
  202. Tylianakis JM, Tscharntke T, Lewis OT 2007. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–5
    [Google Scholar]
  203. Ushio M, Hsieh C-H, Masuda R, Deyle ER, Ye H et al. 2018. Fluctuating interaction network and time-varying stability of a natural fish community. Nature 554:360–63
    [Google Scholar]
  204. Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE 2016. The phyllosphere: microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47:1–24
    [Google Scholar]
  205. Vacher C, Piou D, Desprez-Loustau M-L 2008. Architecture of an antagonistic tree/fungus network: the asymmetric influence of past evolutionary history. PLOS ONE 3:e1740
    [Google Scholar]
  206. Valdovinos FS. 2019. Mutualistic networks: moving closer to a predictive theory. Ecol. Lett. 22:1517–34
    [Google Scholar]
  207. Valido A, Rodríguez-Rodríguez MC, Jordano P 2019. Honeybees disrupt the structure and functionality of plant-pollinator networks. Sci. Rep. 9:4711
    [Google Scholar]
  208. Valverde J, Gómez JM, Perfectti F 2016. The temporal dimension in individual-based plant pollination networks. Oikos 125:468–79
    [Google Scholar]
  209. Valverde S, Vidiella B, Montañez R, Fraile A, Sacristán S, García-Arenal F 2020. Coexistence of nestedness and modularity in host–pathogen infection networks. Nat. Ecol. Evol. 4:568–77
    [Google Scholar]
  210. Van Valkenburgh B, Wang X, Damuth J 2004. Cope's rule, hypercarnivory, and extinction in North American canids. Science 306:101–4
    [Google Scholar]
  211. Vázquez DP. 2005. Degree distribution in plant-animal mutualistic networks: forbidden links or random interactions. ? Oikos 108:421–26
    [Google Scholar]
  212. Vázquez DP, Aizen MA. 2004. Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 85:1251–57
    [Google Scholar]
  213. Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP 2009. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103:1445–57
    [Google Scholar]
  214. Vázquez DP, Poulin R, Krasnov BR, Shenbrot GI 2005. Species abundance and the distribution of specialization in host-parasite interaction networks. J. Anim. Ecol. 74:5946–55
    [Google Scholar]
  215. Verdú M, Valiente-Banuet A. 2008. The nested assembly of plant facilitation networks prevents species extinctions. Am. Nat. 172:751–60
    [Google Scholar]
  216. Vestbo S, Hindberg C, Olesen JM, Funch P 2018. Eiders as long distance connectors in Arctic networks. Cross-Cult. Res. 53:252–71
    [Google Scholar]
  217. Vieira MC, Almeida-Neto M. 2015. A simple stochastic model for complex coextinctions in mutualistic networks: Robustness decreases with connectance. Ecol. Lett. 18:144–52
    [Google Scholar]
  218. Vizentin-Bugoni J, Tarwater CE, Foster JT, Drake DR, Gleditsch JM et al. 2019. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai'i. Science 364:78–82
    [Google Scholar]
  219. Watts DJ, Strogatz SH. 1998. Collective dynamics of ‘small-world’ networks. Nature 393:440–42
    [Google Scholar]
  220. Wilder SM, Norris M, Lee RW, Raubenheimer D, Simpson SJ 2013. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 16:895–902
    [Google Scholar]
  221. Williams RJ, Berlow EL, Dunne JA, Barabási AL, Martinez ND 2002. Two degrees of separation in complex food webs. PNAS 99:12913–16
    [Google Scholar]
  222. Williams RJ, Martinez ND. 2000. Simple rules yield complex food webs. Nature 404:180–83
    [Google Scholar]
  223. Wolkovich EM. 2016. Reticulated channels in soil food webs. Soil Biol. Biochem. 102:18–21
    [Google Scholar]
  224. Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM et al. 2005. Body size in ecological networks. Trends Ecol. Evol. 20:402–9
    [Google Scholar]
  225. Wootton JT. 1994. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25:443–66
    [Google Scholar]
  226. Worm B, Paine RT. 2016. Humans as a hyperkeystone species. Trends Ecol. Evol. 31:600–7
    [Google Scholar]
  227. Xi X, Yang Y, Tylianakis JM, Yang S, Yuran D, Sun S 2020. Asymmetric interactions of seed‐predation network contribute to rare-species advantage. Ecology 101:e03050
    [Google Scholar]
  228. Yeakel JD, Pires MM, de Aguiar MAM, O'Donnell JL, Guimarães PR Jr et al. 2020. Diverse interactions and ecosystem engineering stabilize community assembly. Nat. Commun. 11:3307
    [Google Scholar]
  229. Yodzis P. 1988. The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 69:508–15
    [Google Scholar]
  230. Zanata TB, Dalsgaard B, Passos FC, Cotton PA, Roper JJ et al. 2017. Global patterns of interaction specialization in bird–flower networks. J. Biogeogr. 44:1891–910
    [Google Scholar]
  231. Zhao L, Zhang HY, Tian W, Xu X 2018. Identifying compartments in ecological networks based on energy channels. Ecol. Evol. 8:309–18
    [Google Scholar]
  232. Zu P, Boege K, del-Val E, Schuman MC, Stevenson PC et al. 2020. Information arms race explains plant-herbivore chemical communication in ecological communities. Science 368:64971377–81
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012220-120819
Loading
/content/journals/10.1146/annurev-ecolsys-012220-120819
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error