CC BY-NC-ND 4.0 · Organic Materials 2020; 02(04): 282-287
DOI: 10.1055/s-0040-1718520
Focus Issue: Curved Organic π-Systems
Original Article

Synthesis of Open-Cage Fullerenes with a Long Tail

a   Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
,
Jie Su
a   Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
,
a   Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
› Author Affiliations
Funding This work has been founded by National Natural Science Foundation of China (NNSFC: 21672009 and 21871015) and by Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-201904).


Abstract

To explore potential applications for open-cage fullerenes, we employed 4-((6-bromohexyl)oxy)aniline to react with an open-cage fullerene precursor which has an 11-membered orifice and prepared open-cage fullerenes with an 18-membered orifice. The bromo atom at the end of the hexyl chain in these open-cage compounds could be easily replaced by alkoxyl groups to further extend the linear chain. The results also show that the presence of the alkyl chain slightly changes the reactivity of the orifice-expansion reaction.

[Supporting Information]

Supporting information for this article is available online at http://doi.org/10.1055/s-0040-1718520.


Supporting Information



Publication History

Received: 24 August 2020

Accepted: 10 September 2020

Article published online:
21 October 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hirsch A, Brettreich M. Fullerenes: Chemistry and Reactions. Wiley-VCH: Weinheim; 2005
    • 1b Thilgen C, Diederich F. Chem. Rev. 2006; 106: 5049
  • 2 For example the “fullerene sugar balls”: (a) Nierengarten, J.-F.; Iehl, J.; Oerthel, V.; Holler, M.; Illescas, B. M.; Munoz, A.; Martin, N.; Rojo, J.; Sanchez-Navarro, M.; Cecioni, S.; Vidal, S.; Buffet, K.; Durka, M.; Vincent, S. P. Chem. Commun. 2010, 46, 3860. (b) Muñoz, A.; Sigwalt, D.; Illescas, B. M.; Luczkowiak, J.; Rodríguez-Perez, L.; Nierengarten, I.; Holler, M.; Remy, J.-S.; Buffet, K.; Vincent, S. P.; Rojo, J.; Delgado, R.; Nierengarten, J.-F.; Martín, N. Nat. Chem. 2016, 8, 50. (c) Ramos-Soriano, J.; Reina, J. J.; Illescas, B. M.; de la Cruz, N.; Rodriguez-Perez, L.; Lasala, F.; Rojo, J.; Delgado, R.; Martin, N. S. J. Am. Chem. Soc. 2019; 141: 15403
    • 3a Xie Q, Perez-Cordero E, Echegoyen L. J. Am. Chem. Soc. 1992; 114: 3978
    • 3b Hummelen JC, Knight BW, Lepeq F, Wudl F, Yao J, Wilkins CL. J. Org. Chem. 1995; 60: 532
    • 3c He Y, Chen HY, Hou J, Li Y. J. Am. Chem. Soc. 2010; 132: 1377
    • 3d Umeyama T, Imahori H. Acc. Chem. Res. 2019; 52: 2046
    • 4a Zheng M, Li F, Shi Z, Gao X, Kadish KM. J. Org. Chem. 2007; 72: 2538
    • 4b Li YB, Xu D, Gan LB. Angew. Chem. Int. Ed. 2016; 55: 2483
    • 4c Kosaya MP, Rybalchenko AV, Lukonina NS, Mazaleva ON, Ioffe IN, Markov VY, Troyanov SI, Sidorov LN, Tamm NB, Goryunkov AA. Chem. Asian J. 2018; 13: 1920
    • 4d Li D, Li ZJ, He FG, Geng C, Gao X. J. Org. Chem. 2019; 84: 14679
    • 4e Liu KQ, Wang JJ, Yan XX, Niu C, Ang GW. Chem. Sci. 2020; 11: 384
    • 5a Jehoulet C, Obeng C, Kim YT, Zhou F, Bard AJ. J. Am. Chem. Soc. 1992; 114: 4237
    • 5b Zhou DJ, Gan LB, Luo CP, Huang CH, Yao GQ, Zhao XS, Liu ZF, Xia XH, Zhang B. J. Phys. Chem. 1996; 100: 3150
    • 5c Mezour MA, Choueiri RM, Lukoyanova O, Lennox RB, Perepichka DF. Nanoscale 2016; 8: 16955
    • 5d Liu J, Wang Y, Jiang P, Tu G. ACS Omega 2020; 5: 1336
    • 6a Murata M, Murata Y, Komatsu K. Chem. Commun. 2008; 46: 6083
    • 6b Vougioukalakis GC, Roubelakis MM, Orfanopoulos M. Chem. Soc. Rev. 2010; 39: 817
    • 6c Gan L, Yang D, Zhang Q, Huang H. Adv. Mater. 2010; 22: 1498
  • 7 Shi LJ, Gan LB. J. Phys. Org. Chem. 2013; 26: 766
    • 9a Zhang Q, Jia Z, Liu S, Zhang G, Xiao Z, Yang D, Gan L, Wang Z, Li Y. Org. Lett. 2009; 11: 2772
    • 9b Zhang H, Xu L, Gan L. ChemPlusChem 2017; 82: 1002
  • 10 Xiao Z, Yao J, Yang D, Wang F, Huang S, Gan L, Jia Z, Jiang Z, Yang X, Zheng B, Yuan G, Zhang S, Wang Z. J. Am. Chem. Soc. 2007; 129: 16149
  • 11 Tritto E, Chico R, Sanz-Enguita G, Folcia CL, Ortega J, Coco S, Espinet P. Inorg. Chem. 2014; 53: 3449
    • 12a Homma T, Harano K, Isobe H, Nakamura E. Angew. Chem. Int. Ed. 2010; 49: 1665
    • 12b Zhang G, Liu Y, Liang DH, Gan LB, Li YL. Angew. Chem. Int. Ed. 2010; 49: 5293
    • 12c Kraft A, Roth P, Schmidt D, Stangl J, Müller-Buschbaum K, Beuerle F. Chemistry 2016; 22: 5982
    • 12d Nitta H, Harano K, Isomura M, Backus EH. G, Bonn M, Nakamura E. J. Am. Chem. Soc. 2017; 139: 7677