Skip to main content
Log in

Masses and Pairing Energies of Deformed Nuclei

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A description is considered of the mass surfaces and pairing energies of a number of even–even and odd deformed nuclei with mass numbers in the range of 150 to 190 using polynomials no higher than the second order. An approach in which pairing energy depends on the mass of one odd nucleus is applied. It is shown that the main features of the behavior of pairing energies are preserved in this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bohr, A. and Mottelson, B.R., Nuclear Structure, New York: Benjamin, 1969, vol. 1.

    MATH  Google Scholar 

  2. Solov’ev, V.G., Teoriya slozhnykh yader (Theory of Complex Nuclei), Moscow: Nauka, 1971.

  3. Eisenberg, J.M. and Greiner, W., Microscopic Theory of the Nucleus, Amsterdam: North-Holland, 1972.

    Google Scholar 

  4. Madland, D.G. and Nix, J.R., Nucl. Phys. A, 1988, vol. 476, p. 1.

    Article  ADS  Google Scholar 

  5. Vlasnikov, A.K., Zippa, A.I., and Mikhajlov, V.M., Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, p. 1184.

    Article  Google Scholar 

  6. Vlasnikov, A.K., Zippa, A.I., and Mikhajlov, V.M., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 8, p. 919.

    Article  Google Scholar 

  7. Vlasnikov, A.K., Zippa, A.I., and Mikhajlov, V.M., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, p. 905.

    Article  Google Scholar 

  8. Wang, M., Audi, G., Kondev, F.G., et al., Chin. Phys. C, 2017, vol. 41, no. 3, 030003.

    Article  ADS  Google Scholar 

  9. Lunney, D., Pearson, J.M., and Thibault, C., Rev. Mod. Phys., 2003, vol. 75, p. 1021.

    Article  ADS  Google Scholar 

  10. Garvey, G.T. and Kelson, I., Phys. Rev. Lett., 1966, vol. 16, p. 197.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Vlasnikov.

Additional information

Translated by E. Baldina

Appendices

Parameters of Second Order Surfaces for Describing Energies of Even–Even Nuclei (Even N and Z)

Let us determine functions \(e\left( {s,t} \right)\) and \(e\left( {2,0} \right)\):

$$\begin{gathered} e\left( {s,t} \right) \equiv E\left( {N + s,Z + t} \right) + E\left( {N - s,Z - t} \right) \\ = 2\mathcal{E}\left( {N,Z} \right) + 2\sum\limits_{\begin{subarray}{l} i,k \geqslant 0 \\ i + k = 2\mu \\ \mu = 1;2;3; \ldots \end{subarray}} {{{d}_{{in,kp}}}\frac{{{{s}^{i}}{{t}^{k}}}}{{i!k!}}} {\kern 1pt} {\kern 1pt} ; \\ \end{gathered} $$
$$\begin{gathered} o\left( {s,t} \right) \equiv E\left( {N + s,Z + t} \right) - E\left( {N - s,Z - t} \right) \\ = 2\sum\limits_{\begin{subarray}{l} i,k \geqslant 0 \\ i + k = 2\nu + 1 \\ \nu = 1;2;3; \ldots \end{subarray}} {{{d}_{{in,kp}}}\frac{{{{s}^{i}}{{t}^{k}}}}{{i!k!}}{\kern 1pt} {\kern 1pt} } . \\ \end{gathered} $$

s-approximation:

$$\begin{gathered} E\left( {N,Z} \right) - \mathcal{E}\left( {N,Z} \right) \\ = E\left( {N,Z} \right) - \frac{1}{6}\left[ {4e\left( {2,0} \right) - e\left( {4,0} \right)} \right]; \\ \end{gathered} $$
$${{d}_{{1n}}} = {{o\left( {2,0} \right)} \mathord{\left/ {\vphantom {{o\left( {2,0} \right)} 4}} \right. \kern-0em} 4};\,\,\,\,{{d}_{{2n}}} = \frac{1}{{12}}\left[ { - e\left( {2,0} \right) + e\left( {4,0} \right)} \right].$$

t-approximation:

$$\begin{gathered} E\left( {N,Z} \right) - \mathcal{E}\left( {N,Z} \right) \\ = E\left( {N,Z} \right) - \frac{1}{6}\left[ {4e\left( {0,2} \right) - e\left( {0,4} \right)} \right]. \\ \end{gathered} $$
$${{d}_{{1p}}} = {{o\left( {0,2} \right)} \mathord{\left/ {\vphantom {{o\left( {0,2} \right)} 4}} \right. \kern-0em} 4};\,\,\,\,{{d}_{{2p}}} = \frac{1}{{12}}\left[ { - e\left( {0,2} \right) + e\left( {0,4} \right)} \right].$$

st-approximation:

$$\begin{gathered} E\left( {N,Z} \right) - \mathcal{E}\left( {N,Z} \right) \\ = E\left( {N,Z} \right) - \frac{1}{6}\left[ {4e\left( {2, - 2} \right) - e\left( {4, - 4} \right)} \right]. \\ \end{gathered} $$
$$\begin{gathered} {{d}_{{1n}}} = \frac{1}{8}\left[ {o\left( {2, - 2} \right) + o\left( {4, - 2} \right) - o\left( {2, - 4} \right)} \right]; \\ {{d}_{{1p}}} = \frac{1}{8}\left[ { - o\left( {2, - 2} \right) + o\left( {4, - 2} \right) - o\left( {2, - 4} \right)} \right]. \\ \end{gathered} $$
$$\begin{gathered} {{d}_{{2n}}} = \frac{1}{{24}}\left[ {e\left( {4, - 4} \right) - \frac{5}{2}e\left( {2, - 2} \right)} \right. \\ \left. { + \,\,\frac{3}{2}e\left( {2,2} \right) + e\left( {4, - 2} \right) - e\left( {2, - 4} \right)} \right]. \\ \end{gathered} $$
$$\begin{gathered} {{d}_{{2p}}} = {{d}_{{2n}}} - \frac{1}{{12}}\left[ {e\left( {4, - 2} \right) - e\left( {2,4} \right)} \right]; \\ {{d}_{{2n}}} + {{d}_{{2p}}} - 2{{d}_{{1n1p}}} = \frac{1}{2}\left[ {e\left( {4, - 4} \right) - e\left( {2, - 2} \right)} \right]. \\ \end{gathered} $$

Parameters of Second Order SUrfaces for Describing Energies of Odd Nuclei

Neutron Odd Nuclei

s-approximation:

$${{d}_{{1n}}} = {{o\left( {1,0} \right)} \mathord{\left/ {\vphantom {{o\left( {1,0} \right)} 2}} \right. \kern-0em} 2};\,\,\,\,{{d}_{{2n}}} = \frac{1}{8}\left[ {e\left( {3,0} \right) - e\left( {1,0} \right)} \right].$$

(st)n-approximation:

$$\begin{gathered} {{d}_{{1n}}} = \frac{1}{4}\left[ {o\left( {3, - 2} \right) - o\left( {1, - 4} \right)} \right]; \\ {{d}_{{2n}}} = \frac{1}{8}\left[ {e\left( {1,2} \right) + e\left( {3, - 2} \right) - 2e\left( {1, - 2} \right)} \right]; \\ \end{gathered} $$
$${{d}_{{1n}}} - {{d}_{{1p}}} = \frac{1}{8}\left[ {o\left( {3, - 2} \right) + o\left( {1, - 2} \right)} \right].$$

Here, \(e\left( {s,t} \right)\) and \(o\left( {s,t} \right)\) are functions\(E\left( {{{N}_{{{\text{odd}}}}} + s,Z + t} \right)\), where \({{N}_{{{\text{odd}}}}}\) is an odd number and Z is an even number.

Proton Odd Nuclei

t-approximation:

$${{d}_{{1p}}} = {{o\left( {0,1} \right)} \mathord{\left/ {\vphantom {{o\left( {0,1} \right)} 2}} \right. \kern-0em} 2};\,\,\,\,{{d}_{{2p}}} = \frac{1}{8}\left[ {e\left( {0,3} \right) - e\left( {0,1} \right)} \right].$$

(st)p-approximation:

$$\begin{gathered} {{d}_{{1p}}} = \frac{1}{4}\left[ {o\left( { - 2,3} \right) - o\left( { - 2,1} \right)} \right]; \\ {{d}_{{2p}}} = \frac{1}{8}\left[ {e\left( {2,1} \right) + e\left( { - 2,3} \right) - 2e\left( { - 2,1} \right)} \right]; \\ {{d}_{{1n}}} - {{d}_{{1p}}} = - \frac{1}{8}\left[ {o\left( { - 2,3} \right) + o\left( { - 2,1} \right)} \right]. \\ \end{gathered} $$

Here, \(e\left( {s,t} \right)\) and \(o\left( {s,t} \right)\) are functions \(E\left( {N + s,{{Z}_{{{\text{odd}}}}} + t} \right)\), where \(N\) is an even number and Zodd is an odd number.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasnikov, A.K., Zippa, A.I. & Mikhajlov, V.M. Masses and Pairing Energies of Deformed Nuclei. Bull. Russ. Acad. Sci. Phys. 84, 1309–1313 (2020). https://doi.org/10.3103/S1062873820100287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820100287

Navigation