Skip to main content
Log in

Dual Material Gate Engineering to Reduce DIBL in Cylindrical Gate All Around Si Nanowire MOSFET for 7-nm Gate Length

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In this work, drain current ID for 7-nm gate length dual-material (DM) cylindrical gate all around (CGAA) silicon nanowire (SiNW) has been studied and simulation results are reported using Silvaco ATLAS 3D TCAD. In this device, we consider the non-equilibrium Green’s function (NEGF) approach and self-consistent solution of Schrödinger's equation with Poisson’s equation. The splitting of conduction in multiple sub-bands has been considered and there is no doping in the channel region. The effect of DM gate engineering (variation of screen gate and control gate length having different work function) for SiNW channel with 2-nm radius and gate oxide (SiO2) thickness of 0.8 nm on ID have been studied. It was found that DM gate engineering reduces drain-induced barrier lowering (DIBL) but it also slightly increases sub-threshold slope (SS). This work has obtained small DIBL (~54 mV/V), small SS (~68 mV/dec), and higher IOn/IOff (~4 × 108) ratio as compared to literature concerning the inversion mode devices. The smallest DIBL is obtained when control gate length is the highest, and vice versa. With increase in control gate length, there is also increase in both IOn and IOff but IOn/IOff ratio decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Baidya, T. R. Lenka, and S. Baishya, Mater. Sci. Semicond. Process. 71, 413 (2017).

    Article  Google Scholar 

  2. J. Robertson and R. M. Wallace, Mater. Sci. Eng. R 88, 1 (2015).

    Article  Google Scholar 

  3. F. Adamu-Lema, X. Wang, S. M. Amoroso, C. Riddet, B. Cheng, L. Shifren, R. Aitken, S. Sinha, G. Yeric, and A. Asenov, IEEE Trans. Electron Dev. 61, 3372 (2014).

    Article  ADS  Google Scholar 

  4. U. K. Das, G. Eneman, R. S. R. Velampati, Y. S. Chauhan, K. B. Jinesh, and T. K. Bhattacharyya, J. Electron Dev. Soc. 6, 1129 (2018).

    Google Scholar 

  5. U. K. Das, M. G. Bardon, D. Jang, G. Eneman, P. Schuddinck, D. Yakimets, P. Raghavan, and G. Groeseneken, IEEE Electron Dev. Lett. 38, 9 (2017).

    Article  ADS  Google Scholar 

  6. A. Kundu, A. Dasgupta, R. Das, S. Chakraborty, A. Dutta, and C. K. Sarkar, Superlatt. Microstruct. 94, 60 (2016).

    Article  ADS  Google Scholar 

  7. B. Jena, K. P. Pradhan, D. Dash, G. P. Mishra, P. K. Sahu, and S. K. Mohapatra, Adv. Nat. Sci.: Nanosci. Nanotechnol. 6, 035010 (2015).

    ADS  Google Scholar 

  8. B. Jena, K. P. Pradhan, P. K. Sahu, S. Dash, G. P. Mishra, and S. K. Mohapatra, Electron. Energet. 28, 637 (2015).

    Google Scholar 

  9. H. Wong and H. Iwai, Microelectron. Eng. 83, 1867 (2006).

    Article  Google Scholar 

  10. Silvaco T-CAD, Version: ATLAS 5.19.20.R (2020).

  11. J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111 (2006).

    Article  ADS  Google Scholar 

  12. K. Han, X. Wang, H. Yang, and W. Wang, J. Semicond. 36, 036004 (2015).

  13. K. Kita and A. Toriumi, Appl. Phys. Lett. 94, 132902 (2009).

    Article  ADS  Google Scholar 

  14. R. K. Baruah and R. P. Paily, IEEE Trans. Electron Dev. 61, 123 (2014).

    Article  ADS  Google Scholar 

  15. R. K. Sharma, R. Gupta, M. Gupta, and R. S. Gupta, IEEE Trans. Electron Dev. 56, 1284 (2009).

    Article  ADS  Google Scholar 

  16. P. Kasturi, M. Saxena, M. Gupta, and R. S. Gupta, IEEE Trans. Electron Dev. 55, 372 (2008).

    Article  ADS  Google Scholar 

  17. S. Rewari, V. Nath, S. Haldar, S. S. Deswal, and R. S. Gupta, Microsyst. Technol. 25, 1537 (2017).

    Article  Google Scholar 

  18. Y.-B. Liao,  M.-H. Chiang,  N.  Damrongplasit, W.-C. Hsu, and T.-J. K. Liu, IEEE Trans. Electron Dev. 61, 2371 (2014).

    Article  Google Scholar 

  19. P. Zheng, Yi. B. Liao, N. Damrongplasit, M. H. Chiang, and T. J. K. Liu, IEEE Trans. Electron Dev. 61, 3949 (2014).

    Article  ADS  Google Scholar 

  20. D. Nagy, G. Indalecio, A. J. G. Loureiro, M. A. Elmessary, K. Kalna, and N. Seoane, IEEE J. Electron Dev. Soc. 6, 332 (2018).

    Google Scholar 

  21. C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, Solid-State Electron. 54, 97 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjay, Prasad, B. & Vohra, A. Dual Material Gate Engineering to Reduce DIBL in Cylindrical Gate All Around Si Nanowire MOSFET for 7-nm Gate Length. Semiconductors 54, 1490–1495 (2020). https://doi.org/10.1134/S1063782620110111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620110111

Keywords:

Navigation