Skip to main content
Log in

Manganese-Doped ZnS QDs: an Investigation into the Optimal Amount of Doping

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In the present study, undoped and Mn-doped ZnS, Zn1 – xMnxS (x = 0, 0.02, 0.06, 0.10) quantum dots (QDs) were successfully synthesized using the simple co-precipitation method. The synthesized samples were thoroughly studied using X-ray diffraction (XRD), UV-visible absorption, high-resolution transmission electron microscopy (HRTEM) with selected area of the electron diffraction, scanning electron microscope with energy dispersive X-ray spectra, photoluminescence emission (PLE), and Fourier transform infrared spectroscopy. The XRD pattern confirmed the cubic zinc-blende phase at low doping concentration; however, at higher Mn-doping concentration hetaerolite phase formation was observed. The calculated particle size using Debye–Scherrer relation was found between 1.90–2.35 nm, which was also confirmed by HRTEM analysis. The blue shift in the absorption peak of all the prepared ZnS QDs as compared to bulk ZnS was indicative of the formation of nanoparticles and the calculated band gap was in the range of 3.94–4.11 eV. The PLE spectroscopy of the synthesized QDs was performed at the excitation wavelength of 280 nm and corresponding emission spectroscopy confirmed the surface defects in synthesized ZnS QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. P. Alvistos, Science (Washington, DC, U. S.) 271, 933 (1996).

    Article  ADS  Google Scholar 

  2. L. E. Brus, Phys. Chem. Solids 59, 459 (1998).

    Article  ADS  Google Scholar 

  3. S. Kumar, H. C. Jeon, T. W. Kang, R. Singh, J. K. Sharma, and R. K. Choubey, J. Mater. Sci.: Mater. Electron. 26, 3939 (2015).

    Google Scholar 

  4. B. Xie, R. Hu, and X. Luo, J. Electron. Packag. 138, 020803 (2016).

    Article  Google Scholar 

  5. J. K. Oh, J. Mater. Chem. 20, 8433 (2010).

    Article  Google Scholar 

  6. S. D. Sartale, B. R. Sankapal, M. Lux-Steiner, and A. Ennaoui, Thin Solid Films 480–481, 168 (2005).

  7. D. A. Johnston, M. H. Carletto, K. T. R. Reddy, I. Forbes, and R. W. Miles, Thin Solid Films 403–404, 102 (2002).

  8. Y. Changhui, F. Xiaosheng, L. Guanghai, and Z. Lide, Appl. Phys. Lett. 85, 3035 (2004).

    Article  Google Scholar 

  9. J. Selvaraj, A. Mahesh, V. Baskaralingam, A. Dhayalan, and T. Paramasivam, New J. Chem. 3, 288 (2019). https://doi.org/10.1039/c9nj02222h

    Article  Google Scholar 

  10. J. Ouyang, M. Vincent, D. Kingston, P. Descours, T. Boivineau, M. B. Zaman, X. Wu, and K. Yu, J. Phys. Chem. C 113, 5193 (2009).

    Article  Google Scholar 

  11. V. Wood, J. E. Halpert, M. J. Panzer, M. G. Bawendi, and V. Bulovic, Nano Lett. 9, 2367 (2009).

    Article  ADS  Google Scholar 

  12. Y.-C. Fang,  S.-Y. Chu,  H.-C. Chen, P.-C. Kao, I.-G. Chen, and C.-S. Hwang, J. Electrochem. Soc. 156, K55 (2009).

    Article  Google Scholar 

  13. T. P. Surkova, V. R. Galakhov, and E. Z. Kurmaev, Low Temp. Phys. 35, 79 (2009).

    Article  ADS  Google Scholar 

  14. W. H. Zhao, Z. Q. Wei, L. Zhang, X. J. Wu, X. Wang, and J. L. Jiang, J. Alloys Compd. 698, 754 (2017).

    Article  Google Scholar 

  15. G. S. Harish and P. Sreedhara Reddy, AIP Conf. Proc. 1536, 121 (2013).

    Article  ADS  Google Scholar 

  16. S. Gupta, R. K. Choubey, L. K. Sharma, M. P. Ghosh, M. Kar, and S. Mukherjee, Semicond. Sci. Technol. 34, 105006 (2019).

    Article  ADS  Google Scholar 

  17. J. Liu, J. Ma, Y. Liu, Z. Song, Y. Sun, J. Fang, and Z. Liu, J. Alloys Compd. 486, L40 (2009).

    Article  Google Scholar 

  18. A. L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  ADS  Google Scholar 

  19. E. O. Kane, Phys. Rev. B 18, 6849 (1978).

    Article  ADS  Google Scholar 

  20. J. Nanda, S. Sapra, and D. D. Sarma, Chem. Mater. 12, 1018 (2000).

    Article  Google Scholar 

  21. J. Tauc and A. Menth, J. Non-Cryst. Solids, Nos. 8–10, 569 (1972).

  22. L. E. Brus, J. Chem. Phys. 79, 5566 (1983).

    Article  ADS  Google Scholar 

  23. H. Shen, C. Zhou, S. S. Xu, C. Yu, H. Wang, X. Chen, and L. S. Li, J. Mater. Chem. 21, 6046 (2011).

    Article  Google Scholar 

  24. L. Chen, C. Wang, Q. Li, S. Yang, L. Hou, and S. Chen, J. Mater. Sci. 44, 3413 (2009).

    Article  ADS  Google Scholar 

  25. Y. Li, Y. Ding, Y. Zhang, and Y. Qian, J. Phys. Chem. Solids 60, 13 (1999).

    Article  ADS  Google Scholar 

  26. A. A. Zarandi, A. A. S. Alvani, R. Salimi, H. Sameie, S. Moosakhani, D. Poelman, and F. Rosei, J. Mater. Chem. C 3, 3935 (2015).

    Article  Google Scholar 

  27. A. K. Shahi, B. K. Pandey, R. K. Swarnkar, and R. Gopal, Appl. Surf. Sci. 257, 9846 (2011).

    Article  ADS  Google Scholar 

  28. L. K. Sharma and S. Mukherjee, J. Electron. Mater. 46, 1270 (2016).

    Article  ADS  Google Scholar 

  29. S. Wageh, Z. S. Ling, and X. Xu-Rong, J. Cryst. Growth 255, 332 (2003).

    Article  ADS  Google Scholar 

  30. R. Shahid, M. Toprak, H. Soliman, and M. Muhammed, Open Chem. 10, 54 (2012).

    Article  Google Scholar 

  31. M. Kuppayee, G. K. V. Nachiyar, and V. Ramasamy, Mater. Sci. Semicond. Process. 15, 136 (2012).

    Article  Google Scholar 

  32. A. Jain, S. Panwar, T. W. Kang, H. C. Jeon, S. Kumar, and R. K. Choubey, J. Mater. Sci.: Mater. Electron. 25, 1716 (2014).

    Google Scholar 

  33. B. S. Remadevi, R. Raveendran, and A. V. Vaidyan, Pramana J. Phys. 68, 679 (2007).

    Google Scholar 

  34. I. Ahemen, O. Meludu, and E. Odoh, Braz. J. Appl. Sci. Technol. 3, 1228 (2013).

    Article  Google Scholar 

Download references

Funding

One of the authors, Ravi Kant Choubey is thankful to the Council of Science and Technology, Lucknow, Uttar Pradesh, India for the financial support (Vide no. CST/4051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Choubey.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, S., Gupta, S., Mukherjee, S. et al. Manganese-Doped ZnS QDs: an Investigation into the Optimal Amount of Doping. Semiconductors 54, 1450–1458 (2020). https://doi.org/10.1134/S106378262011024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262011024X

Keywords:

Navigation