Skip to main content
Log in

Wave propagation and its stability for a class of discrete diffusion systems

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is devoted to investigating the wave propagation and its stability for a class of two-component discrete diffusive systems. We first establish the existence of positive monotone monostable traveling wave fronts. Then, applying the techniques of weighted energy method and the comparison principle, we show that all solutions of the Cauchy problem for the discrete diffusive systems converge exponentially to the traveling wave fronts when the initial perturbations around the wave fronts lie in a suitable weighted Sobolev space. Our main results can be extended to more general discrete diffusive systems. We also apply them to the discrete epidemic model with the Holling-II-type and Richer-type effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, A.R.A., Sleeman, B.D.: Wave front propagation and its failure in coupled systems of discrete bistable cells modelled by FitzHugh–Nagumo dynamics. Int. J. Bifur. Chaos Appl. Sci. Eng. 5, 63–74 (1995)

    Article  Google Scholar 

  2. Bell, J., Cosner, C.: Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons. Quart. Appl. Math. 42, 1–14 (1984)

    Article  MathSciNet  Google Scholar 

  3. Carpio, A., Bonilla, L.L., Dell’Acqua, G.: Wave front motion in semiconductor superlattices. Phys. Rev. E 64, 1–9 (2001)

    Article  Google Scholar 

  4. Capasso, V., Wilson, R.E.: Analysis of reaction–diffusion system modeling man-environment-man epidemics. SIAM. J. Appl. Math. 57, 327–346 (1997)

    Article  MathSciNet  Google Scholar 

  5. Chang, C.-H., Hsu, C.-H., Yang, T.-S.: Stability of traveling waves for a generalized Lotka–Volterra competition model. ZAMP 71:70, 18 (2020)

    Google Scholar 

  6. Chen, X., Guo, J.-S.: Existence and asymptotic stability of traveling waves of a discrete monostable equation. J. Differ. Equ. 184, 1137–1149 (2002)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Guo, J.-S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326, 123–146 (2003)

    Article  MathSciNet  Google Scholar 

  8. Chen, X., Fu, S.-C., Guo, J.-S.: Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J. Math. Anal. 38, 233–258 (2006)

    Article  MathSciNet  Google Scholar 

  9. Chern, I.L., Mei, M., Yang, X.F., Zhang, Q.F.: Stability of non-monotone critical traveling waves for reaction–diffusion equations with time-delay. J. Differ. Equ. 259, 1503–1541 (2015)

    Article  MathSciNet  Google Scholar 

  10. Fu, S.-C., Guo, J.-S., Shieh, S.-Y.: Traveling wave solutions for some discrete quasilinear parabolic equations. Nonlinear Anal. 48, 1137–1149 (2002)

    Article  MathSciNet  Google Scholar 

  11. Grüner, G.: The dynamics of charge-density waves. Rev. Modern Phys. 60, 1129–1181 (1988)

    Article  Google Scholar 

  12. Guo, J.-S., Wu, C.-H.: Entire solutions for a two-component competition system in a lattice. Tohoku Math. J. 62, 17–28 (2010)

    Article  MathSciNet  Google Scholar 

  13. Guo, J.-S., Wu, C.-H.: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ. 252, 4357–4391 (2012)

    Article  MathSciNet  Google Scholar 

  14. Guo, S.J., Zimmer, J.: Stability of traveling wavefronts in discrete reaction–diffusion equations with nonlocal delay effects. Nonlinearity 28, 463–492 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hsu, C.-H., Lin, J.-J.: Stability analysis of traveling wave solutions for some discrete reaction–diffusion systems. Discrete Contin. Dyn. Syst. B 25, 1757–1774 (2020)

    Article  Google Scholar 

  16. Hsu, C.-H., Lin, J.-J., Yang, T.-S.: Traveling wave solutions for delayed lattice reaction–diffusion systems. IMA J. Appl. Math. 80, 302–323 (2015)

    Article  MathSciNet  Google Scholar 

  17. Hsu, C.-H., Yang, T.-S.: Existence, uniqueness, monotonicity and asymptotic behavior of traveling waves for an epidemic model. Nonlinearity 26, 121–139 (2013). Corrigendum: 26 (2013), 2925-2928

    Article  MathSciNet  Google Scholar 

  18. Hsu, C.-H., Yang, T.-S., Yu, Z.X.: Existence and exponential stability of traveling waves for delayed reaction–diffusion systems. Nonlinearity 31, 838–863 (2018)

    Article  MathSciNet  Google Scholar 

  19. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    Article  MathSciNet  Google Scholar 

  20. Lewis, M.A., Schmitz, G.: Biological invasion of an organism with separate mobile and stationary states: modeling and analysis. Forma 11, 1–25 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Lin, C.K., Lin, C.T., Lin, Y., Mei, M.: Exponential stability of nonmonotone traveling waves for Nicholson’s Blowflies equation. SIAM. J. Math. Anal. 46, 1053–1084 (2014)

    Article  MathSciNet  Google Scholar 

  22. Ma, S., Zou, X.: Existence, uniqueness and stability of traveling waves in a discrete reaction–diffusion monostable equation with delay. J. Differ. Equ. 217, 54–87 (2005)

    Article  Google Scholar 

  23. Martin, R.H., Smith, H.L.: Abstract functional-differential equations and reaction–diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Mei, M., Lin, C.K., Lin, C.T., So, J.W.H.: Traveling wavefronts for time-delayed reaction–diffusion equation: (I) local nonlinearity. J. Differ. Equ. 247, 495–510 (2009)

    Article  MathSciNet  Google Scholar 

  25. Mei, M., Ou, C., Zhao, X.Q.: Global stability of monostable traveling waves for nonlocal time-delayed reaction–diffusion equations. SIAM J. Math. Anal. 42, 2762–2790 (2010)

    Article  MathSciNet  Google Scholar 

  26. Mei, M., So, J., Li, M., Shen, S.: Asymptotic stability of travelling waves for Nicholson’s blowflies equation with diffusion. Proc. R. Soc. Edinb. 134, 579–594 (2004)

    Article  MathSciNet  Google Scholar 

  27. Mei, M., So, J.W.H.: Stability of strong traveling waves for a nonlocal time-delayed reaction–diffusion equation. Proc. R. Soc. Edinb. 138, 551–568 (2008)

    Article  Google Scholar 

  28. Murray, J.: Mathematical Biology, 2nd edn. Springer, New York (1993)

    Book  Google Scholar 

  29. Thieme, H.R.: Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math. 306, 94–121 (1979)

    MathSciNet  MATH  Google Scholar 

  30. Wan, Y.J.: Existence and stability of traveling wavefronts for two kinds of nonlinear reaction diffusion equations, M.Sc. thesis, Univestiy of Shanghai for Science and Technology (2019)

  31. Wang, Z.C., Li, W.T., Ruan, S.: Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay. J. Differ. Equ. 238, 153–200 (2007)

    Article  MathSciNet  Google Scholar 

  32. Yu, Z.X., Xu, F., Zhang, W.G.: Stability of invasion traveling waves for a competition system with nonlocal dispersals. Appl. Anal. 96, 1107–1125 (2017)

    Article  MathSciNet  Google Scholar 

  33. Yang, Y., Li, W.T., Wu, S.: Exponential stability of traveling fronts in a diffusion epidemic system with delay. Nonlinear Anal. Real World Appl. 12, 1223–1234 (2011)

    Article  MathSciNet  Google Scholar 

  34. Yang, Y., Li, W.T., Wu, S.: Stability of traveling waves in a monostable delayed system without quasi-monotonicity. Nonlinear Anal. Real World Appl. 3, 1511–1526 (2013)

    Article  MathSciNet  Google Scholar 

  35. Zinner, B.: Stability of traveling wavefronts for the discrete Nagumo equation. SIAM J. Math. Anal. 22, 1016–1020 (1991)

    Article  MathSciNet  Google Scholar 

  36. Zinner, B.: Existence of traveling wavefront solution for the discrete Nagumo equation. J. Differ. Equ. 96, 1–27 (1992)

    Article  MathSciNet  Google Scholar 

  37. Zinner, B., Harris, G., Hudson, W.: Travelling wavefronts for the discrete Fisher’s equation. J. Differ. Equ. 105, 46–62 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to two anonymous referees for their careful reading and helpful suggestions which led to an improvement of our original manuscript. In addition, the authors would like to thank Mr. Yuji Wan for his contribution in preparing the manuscript, while parallel results can be found in his master thesis [30]. Zhixian Yu is partially supported by the Natural Science Foundation of China (No. 12071297), Science and Technology Innovation Plan of Shanghai (No. 20JC1414200), and Natural Science Foundation of Shanghai (No. 18ZR1426500). Cheng-Hsiung Hsu is partially supported by the MOST and NCTS of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixian Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Hsu, CH. Wave propagation and its stability for a class of discrete diffusion systems. Z. Angew. Math. Phys. 71, 194 (2020). https://doi.org/10.1007/s00033-020-01423-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01423-4

Keywords

Mathematics Subject Classification

Navigation