Skip to main content
Log in

Review of non-conventional technologies for assisting ultra-precision single-point diamond turning

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ultra-precision single-point diamond turning (SPDT) is a recent realm in advanced manufacturing of optical components with nanometric features. SPDT has various applications in different industry sectors including space science, biomedical engineering, military, defense, and optics. However, different factors negatively impact the outcome of SPDT process and limit the success of optical surface generation. In addition, standard SPDT is based on the pure mechanical action of cutting and is limited when it comes to turning brittle and hard-to-machine materials. These materials have low machinability, and cutting them with diamond tool has been affected by high tool wear, short tool life, and consequently low quality of optical surface finish. Non-conventional machining techniques have been implemented to assist the purely mechanical SPDT process in order to eliminate the existing limitations, reduce effects of influencing factors, and enable an optimized machining environment. Different methods have been developed and used for assisting the SPDT process. In this review paper, recent trends and advances in technologies used for assisting SPDT are surveyed. Studying constructive and destructive effects of these SPDT-assisted technologies could provide necessary information for using the best possible solutions in diamond turning of different materials while improving targeted parameters. In addition, studying the effects of assisting technologies could provide a good perspective on hybrid SPDT process limitations and possible solutions. Although various techniques and solutions have been developed, there are still limitations for enabling an ultimate turning process. The paper highlights the possible trend of new technologies related to SPDT. More attention needs to be given, especially, to the development of novel techniques to completely solve existing limitations and enable best SPDT performance. Future studies need to be focused on the development of hybrid SPDT platforms, based on suitable combinations of non-conventional technologies, to achieve the best possible quality in terms of optical surface generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Luo X, Qin Y (2018) Hybrid machining : theory, methods, and case studies. Academic Press, London

    Google Scholar 

  2. Groover MP (2007) Fundamentals of modern manufacturing: materials processes, and systems (7th Ed). Wiley, Hoboken

  3. Sun X, Cheng K (2015) Chapter 2 - Micro-/nano-machining through mechanical cutting A2 - Qin, Yi, in Micromanufacturing engineering and technology (Second Edition). William Andrew Publishing, Boston, pp 35–59

    Google Scholar 

  4. Balasubramaniam R, Sarepaka RV, Subbiah S (2017) Diamond turn machining: theory and practice (1st Ed). CRC Press, Tylor & Francis Group, Boca Raton

  5. Yuan J, Lyu B, Hang W, Deng Q (2017) Review on the progress of ultra-precision machining technologies. Front Mech Eng 12(2):158–180

    Google Scholar 

  6. Hatefi S, Abou-El-Hossein K (2020) Review of single-point diamond turning process in terms of ultra-precision optical surface roughness. Int J Adv Manuf Technol 106(5):2167–2187

    Google Scholar 

  7. Gläbe R, Riemer O (2010) Diamond machining of micro-optical components and structures. In: Micro-Optics 2010. International Society for Optics and Photonics. https://doi.org/10.1117/12.859075

  8. McGeough JA (2001) Micromachining of engineering materials. Mechanical Engineering (pp 416). CRC Press, Tylor & Francis Group, Boca Raton

  9. Jain VK (2012) Micromanufacturing processes (1st Ed). CRC Press, Tylor & Francis Group

  10. Gupta K (2017) Advanced manufacturing technologies (1st Ed). Modern Machining, Advanced Joining, Sustainable Manufacturing. Springer International Publishing, New York

  11. Xu W, Huang S, Chen F, Song J, Liu X (2014) Diamond wear properties in cold plasma jet. Diam Relat Mater 48:96–103

    Google Scholar 

  12. Islak S, Kir D, Celik H (2013) Investigation of the usability of cubic boron nitride cutting tools as an alternative to diamond cutting tools for the aircraft industry. Arch Metall Mater 58(4):1119–1123

    Google Scholar 

  13. Jia P (2014) Research on critical cut depth of glass BK7 in diamond cutting. In: Materials science forum. Trans Tech Publ 770:230–233. https://doi.org/10.4028/www.scientific.net/msf.770.230

  14. Jia P (2014) Research on machinability of SF6 in diamond cutting with cutting fluid. In: Materials science forum. Trans Tech Publ 770:234–238. https://doi.org/10.4028/www.scientific.net/msf.770.234

  15. Riemer O (2011) Advances in ultra precision manufacturing. Laboratory for Precision Machining (LFM), Bremen

  16. Goel S, Luo X, Agrawal A, Reuben RL (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tools Manuf 88:131–164

    Google Scholar 

  17. Zhang S et al (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95

    Google Scholar 

  18. Lee W, Cheung BC (2003) Surface generation in ultra-precision diamond turning: modelling and practices, (1st Ed) vol 12. Wiley, Hoboken

  19. Kumar J, Negi VS, Chattopadhyay KD, Sarepaka RGV, Sinha RK (2017) Thermal effects in single point diamond turning: analysis, modeling and experimental study. Measurement 102:96–105

    Google Scholar 

  20. Walter M, Norlund B, Koning R, Roblee J (2002) Error Budget as a Design Tool for Ultra-Precision Diamond Turning Machines Form Errors. Precitech, Inc., Keene

  21. Zou L, Dong G, Zhou M (2013) Investigation on frictional wear of single crystal diamond against ferrous metals. Int J Refract Met Hard Mater 41:174–179

    Google Scholar 

  22. Jianxin D, Hui Z, Ze W, Aihua L (2011) Friction and wear behavior of polycrystalline diamond at temperatures up to 700 C. Int J Refract Met Hard Mater 29(5):631–638

    Google Scholar 

  23. Kim S-J, le D, Lee SW, Song KH, Lee DY (2014) Experiment-based statistical prediction on diamond tool wear in micro grooving NiP alloys. Diam Relat Mater 41:6–13

    Google Scholar 

  24. Zou L, Dong GJ, Zhou M (2014) Tool Wear Properties of Diamond-Cutting Ferrous Metal. In: Advanced Materials Research. Trans Tech Publ 1027:36–39. https://doi.org/10.4028/www.scientific.net/amr.1027.36

  25. Yip W, To S (2017) Tool life enhancement in dry diamond turning of titanium alloys using an eddy current damping and a magnetic field for sustainable manufacturing. J Clean Prod 168:929–939

    Google Scholar 

  26. Zhang S, S. To, Zhang G (2017) Diamond tool wear in ultra-precision machining. Int J Adv Manuf Technol 88(1-4):613–641

    Google Scholar 

  27. Jia P, Zhou M (2012) Tool wear and its effect on surface roughness in diamond cutting of glass soda-lime. Chin J Mech Eng 25(6):1224–1230

    Google Scholar 

  28. Liman MM, Abou-El-Hossein K, Abdulkadir LN (2019) Analysis of diamond nanomachining of contact lens polymers using molecular dynamics. Int J Adv Manuf Technol 105(7-8):3067–3078

    Google Scholar 

  29. Abdulkadir LN, Abou-el-Hossein K, Jumare AI, Liman MM, Olaniyan TA, Odedeyi PB (2018) Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining. Int J Adv Manuf Technol 98(1-4):317–371

    Google Scholar 

  30. Nath C, Rahman M, Neo KS (2009) Enhancing the performance of polycrystalline diamond tools for machining WC by ultrasonic elliptical vibration cutting method. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 27(3):1241–1246

    Google Scholar 

  31. Maurotto A, Muhammad R, Roy A, Silberschmidt VV (2013) Enhanced ultrasonically assisted turning of a β-titanium alloy. Ultrasonics 53(7):1242–1250

    Google Scholar 

  32. Patil S, Joshi S, Tewari A, Joshi SS (2014) Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrasonics 54(2):694–705

    Google Scholar 

  33. Kumar J (2013) Ultrasonic machining—a comprehensive review. Mach Sci Technol 17(3):325–379

    Google Scholar 

  34. Kong L, Cheung C, Lee W (2016) A theoretical and experimental investigation of orthogonal slow tool servo machining of wavy microstructured patterns on precision rollers. Precis Eng 43:315–327

    Google Scholar 

  35. Li L et al (2006) Fabrication of diffractive optics by use of slow tool servo diamond turning process. Opt Eng 45(11):113401

    Google Scholar 

  36. Liu Y, Qiao Z, Qu D, Wu Y, Xue J, Li D, Wang B (2018) Experimental investigation on form error for slow tool servo diamond turning of micro lens arrays on the roller mold. Materials 11(10):1816

    Google Scholar 

  37. Zhu L, Li Z, Fang F, Huang S, Zhang X (2018) Review on fast tool servo machining of optical freeform surfaces. Int J Adv Manuf Technol 95:2071–2092. https://doi.org/10.1007/s00170-017-1271-4

  38. Senthil Kumar A et al (2014) In: Rahman M (ed) Fast and fine tool servo for ultraprecision machining in comprehensive materials processing, vol 11, pp 61–88

    Google Scholar 

  39. Kwok T et al (2010) Analysis of surface generation in ultra-precision machining with a fast tool servo. Proc Inst Mech Eng B J Eng Manuf 224(9):1351–1367

    Google Scholar 

  40. Kong L, Cheung C, Kwok T (2014) Theoretical and experimental analysis of the effect of error motions on surface generation in fast tool servo machining. Precis Eng 38(2):428–438

    Google Scholar 

  41. Feng H, Xia R, Li Y, Chen J, Yuan Y, Zhu D, Chen S, Chen H (2017) Fabrication of freeform progressive addition lenses using a self-developed long stroke fast tool servo. Int J Adv Manuf Technol 91(9-12):3799–3806

    Google Scholar 

  42. Yu DP, Hong GS, San Wong Y (2012) Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. Int J Mach Tools Manuf 52(1):13–23

    Google Scholar 

  43. Brinksmeier E, Gläbe R, Schönemann L (2012) Review on diamond-machining processes for the generation of functional surface structures. CIRP J Manuf Sci Technol 5(1):1–7

    Google Scholar 

  44. Yu DP, Wong YS, Hong GS (2012) Ductile-Regime Machining for Fast Tool Servo Diamond Turning of Micro-Structured Surfaces on Brittle Materials. Advanced Materials Research. Trans Tech Publ 333–338. https://doi.org/10.4028/www.scientific.net/amr.500.333

  45. Chen Y-L, Cai Y, Tohyama K, Shimizu Y, Ito S, Gao W (2017) Auto-tracking single point diamond cutting on non-planar brittle material substrates by a high-rigidity force controlled fast tool servo. Precis Eng 49:253–261

    Google Scholar 

  46. Liu Q, Li Q, Zhou X, Liu Z, Lu M (2018) Fabrication of anti-reflective surfaces by 3-DOF fast tool servo diamond turning. Int J Adv Manuf Technol 95(5-8):2875–2883

    Google Scholar 

  47. Zhu Z, S. To, Zhang S (2015) Theoretical and experimental investigation on the novel end-fly-cutting-servo diamond machining of hierarchical micro-nanostructures. Int J Mach Tools Manuf 94:15–25

    Google Scholar 

  48. Zhu Z, To S, Zhang S (2015) Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining. Opt Express 23(16):20593–20604

    Google Scholar 

  49. Yu DP, San Wong Y, Hong GS (2011) Optimal selection of machining parameters for fast tool servo diamond turning. Int J Adv Manuf Technol 57(1-4):85–99

    Google Scholar 

  50. Liu Q, Zhou X, Xu P (2014) A new tool path for optical freeform surface fast tool servo diamond turning. Proc Inst Mech Eng B J Eng Manuf 228(12):1721–1726

    Google Scholar 

  51. Li L, Collins JSA, Yi AY (2010) Optical effects of surface finish by ultraprecision single point diamond machining. J Manuf Sci Eng 132(2):021002-021002-9

    Google Scholar 

  52. Zhu Z, S. To (2015) Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics. Opt Express 23(16):20234–20248

    Google Scholar 

  53. Yu DP, Gan SW, Wong YS, Hong GS, Rahman M, Yao J (2012) Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces. Int J Adv Manuf Technol 63(9-12):1137–1152

    Google Scholar 

  54. Zhu Z, Zhou X, Luo D, Liu Q (2013) Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization. Opt Express 21(23):28469–28482

    Google Scholar 

  55. Hao A, Zhang S (2017) The Tool Path Planning for Ring Torus Optical Surface Diamond Turning with Parallel 2DOF Fast Tool Servo. the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016), MATEC Web of Conferences 95. https://doi.org/10.1051/matecconf/20179505005

  56. Tang H, Li H, To S, Yu KM, He Y, Gao J, Chen X, Li J (2018) Design and control of a new 3-PUU fast tool servo for complex microstructure machining. Int J Adv Manuf Technol 94(9-12):3503–3517

    Google Scholar 

  57. Singh R, Khamba J (2006) Ultrasonic machining of titanium and its alloys: a review. J Mater Process Technol 173(2):125–135

    Google Scholar 

  58. Koshimizu S (2009) Ultrasonic vibration-assisted cutting of titanium alloy. In: Key engineering materials. Trans Tech Publ 389:277–282. https://doi.org/10.4028/www.scientific.net/KEM.389-390.277

  59. Zhu Z, To S, Xiao G, Ehmann KF, Zhang G (2016) Rotary spatial vibration-assisted diamond cutting of brittle materials. Precis Eng 44:211–219

    Google Scholar 

  60. Nath C, Lim G, Zheng H (2012) Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics. Ultrasonics 52(5):605–613

    Google Scholar 

  61. Zou L, Huang Y, Zhou M, Duan L (2017) Investigation on diamond tool wear in ultrasonic vibration-assisted turning die steels. Mater Manuf Process 32(13):1505–1511

    Google Scholar 

  62. Amini S, Khosrojerdi MR, Nosouhi R, Behbahani S (2014) An experimental investigation on the machinability of Al2O3 in vibration-assisted turning using PCD tool. Mater Manuf Process 29(3):331–336

    Google Scholar 

  63. Li Z, Jin G, Fang F, Gong H, Jia H (2018) Ultrasonically assisted single point diamond turning of optical mold of tungsten carbide. Micromachines 9(2):77

    Google Scholar 

  64. Shamoto E, Suzuki N (2014) Ultrasonic vibration diamond cutting and ultrasonic elliptical vibration cutting. Comprehensive Materials Processing, Elsevier, pp 405–454

  65. Guo P, Ehmann KF (2013) An analysis of the surface generation mechanics of the elliptical vibration texturing process. Int J Mach Tools Manuf 64:85–95

    Google Scholar 

  66. Zhang S et al (2015) A review of machine-tool vibration and its influence upon surface generation in ultra-precision machining. Int J Mach Tools Manuf 91:34–42

    Google Scholar 

  67. Brehl D, Dow T (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172

    Google Scholar 

  68. Liu X, Wu D, Zhang J (2018) Fabrication of micro-textured surface using feed-direction ultrasonic vibration-assisted turning. Int J Adv Manuf Technol 97(9-12):3849–3857

    Google Scholar 

  69. Liu X, Wu D, Zhang J, Hu X, Cui P (2019) Analysis of surface texturing in radial ultrasonic vibration-assisted turning. J Mater Process Technol 267:186–195

    Google Scholar 

  70. Xu S, Kuriyagawa T, Shimada K, Mizutani M (2017) Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces. Front Mech Eng 12(1):33–45

    Google Scholar 

  71. Thoe T, Aspinwall D, Wise M (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239–255

    Google Scholar 

  72. Gaidys R, Dambon O, Ostasevicius V, Dicke C, Narijauskaite B (2017) Ultrasonic tooling system design and development for single point diamond turning (SPDT) of ferrous metals. Int J Adv Manuf Technol 93(5-8):2841–2854

    Google Scholar 

  73. Kuşhan MC, Orak S, Uzunonat Y (2017) Ultrasonic Assisted Machining Methods: A Review. International Journal of Advanced Engineering Research and Application (IJA-ERA) 3(5)

  74. Cheung C-fB (2000) Modelling and simulation of nano-surface generation in ultra-precision machining. Hong Kong Polytechnic University -- Dissertations, Kowloon, pp 226

  75. Cheung C, Lee W (2000) Modelling and simulation of surface topography in ultra-precision diamond turning. Proc Inst Mech Eng B J Eng Manuf 214(6):463–480

  76. Geng D, Zhang D, Li Z, Liu D (2017) Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks. Ultrasonics 75:80–90

    Google Scholar 

  77. Zhou ZM et al (2012) Tool wear of diamond tools in ultrasonic vibration turning titanium alloys. In: Applied mechanics and materials. Trans Tech Publ

  78. Zhong Z, Lin G (2005) Diamond turning of a metal matrix composite with ultrasonic vibrations. Mater Manuf Process 20(4):727–735

    Google Scholar 

  79. Zhong Z, Lin G (2006) Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles. Int J Adv Manuf Technol 27(11-12):1077–1081

    Google Scholar 

  80. Zhong Z, Hung NP (2000) Diamond turning and grinding of aluminum-based metal matrix composites. Mater Manuf Process 15(6):853–865

    Google Scholar 

  81. Nath C, Rahman M (2008) Effect of machining parameters in ultrasonic vibration cutting. Int J Mach Tools Manuf 48(9):965–974

    Google Scholar 

  82. Huang S, Liu X, Chen FZ, Zheng HX, Yang XL, Wu LB, Song JL, Xu WJ (2016) Diamond-cutting ferrous metals assisted by cold plasma and ultrasonic elliptical vibration. Int J Adv Manuf Technol 85(1-4):673–681

    Google Scholar 

  83. Goel S, Martinez FD, Chavoshi SZ, Khatri N, Giusca C (2018) Molecular dynamics simulation of the elliptical vibration-assisted machining of pure iron. J Micromanuf 1(1):6–19

    Google Scholar 

  84. Sajjady S et al (2016) Analytical and experimental study of topography of surface texture in ultrasonic vibration assisted turning. Mater Des 93:311–323

    Google Scholar 

  85. Hosseinabadi HN, Sajjady S, Amini S (2018) Creating micro textured surfaces for the improvement of surface wettability through ultrasonic vibration assisted turning. Int J Adv Manuf Technol 96:2825–2839. https://doi.org/10.1007/s00170-018-1580-2

  86. Guo P, Ehmann KF (2011) Development of a new vibrator for elliptical vibration texturing. In: ASME 2011 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers 1:373–380. https://doi.org/10.1115/MSEC2011-50131

  87. Zhang X, Kumar AS, Rahman M, Liu K (2013) Modeling of the effect of tool edge radius on surface generation in elliptical vibration cutting. Int J Adv Manuf Technol 65(1–4):35–42

  88. Zhang C, Shi G, Ehmann KF (2017) Investigation of hybrid micro-texture fabrication in elliptical vibration-assisted cutting. Int J Mach Tools Manuf 120:72–84

    Google Scholar 

  89. Zhang J, Suzuki N, Wang Y, Shamoto E (2015) Ultra-precision nano-structure fabrication by amplitude control sculpturing method in elliptical vibration cutting. Precis Eng 39:86–99

    Google Scholar 

  90. Nestler A, Schubert A (2014) Surface properties in ultrasonic vibration assisted turning of particle reinforced aluminium matrix composites. Procedia CIRP 13:125–130

    Google Scholar 

  91. Huang W, Yu D, Zhang X, Zhang M, Chen D (2018) Ductile-regime machining model for ultrasonic elliptical vibration cutting of brittle materials. J Manuf Process 36:68–76

    Google Scholar 

  92. Zhang X, Deng H, Liu K (2019) Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools. CIRP Ann 68(1):69–72

    Google Scholar 

  93. Zhang X, Huang R, Liu K, Kumar AS, Deng H (2018) Suppression of diamond tool wear in machining of tungsten carbide by combining ultrasonic vibration and electrochemical processing. Ceram Int 44(4):4142–4153

    Google Scholar 

  94. Davim JP, Jackson MJ (2013) Nano and micromachining. John Wiley & Sons, Hoboken

  95. Dai H, Li S, Chen G (2018) Comparison of subsurface damages on mono-crystalline silicon between traditional nanoscale machining and laser-assisted nanoscale machining via molecular dynamics simulation. Nucl Instrum Methods Phys Res, Sect B 414:61–67

    Google Scholar 

  96. Ding H, Shen N, Shin YC (2012) Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys. J Mater Process Technol 212(3):601–613

    Google Scholar 

  97. Simoneau A, Ng E, Elbestawi M (2006) Surface defects during microcutting. Int J Mach Tools Manuf 46(12-13):1378–1387

    Google Scholar 

  98. Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. J Eng Ind 113(2):184–189

    Google Scholar 

  99. Jasinevicius RG, Duduch JG, Pizani PS (2007) Structure evaluation of submicrometre silicon chips removed by diamond turning. Semicond Sci Technol 22(5):561–573

    Google Scholar 

  100. Domnich V, Gogotsi Y (2002) Phase transformations in silicon under contact loading. Rev Adv Mater Sci (Russia) 3(1):1–36

    Google Scholar 

  101. Langan SM, Ravindra D, Mann AB (2018) Process parameter effects on residual stress and phase purity after microlaser-assisted machining of silicon. Mater Manuf Process 33(14):1578–1586

    Google Scholar 

  102. Mohammadi H et al (2014) An experimental study on single point diamond turning of an unpolished silicon wafer via micro-laser assisted machining. In: Advanced materials research. Trans Tech Publ 1017:175–180. https://doi.org/10.4028/www.scientific.net/amr.1017.175

  103. Ravindra D, Patten J (2013) Micro-laser assisted single point diamond turning feasibility tests of single crystal silicon. In: American Society for Precision Engineers (ASPE) 28th Annual Meeting, St. Paul, Minnesota, Raleigh, North Carolina

  104. Ravindra D, Ghantasala MK, Patten J (2012) Ductile mode material removal and high-pressure phase transformation in silicon during micro-laser assisted machining. Precis Eng 36(2):364–367

    Google Scholar 

  105. Mohammadi H, Ravindra D, Kode SK, Patten JA (2015) Experimental work on micro laser-assisted diamond turning of silicon (111). J Manuf Process 19:125–128

    Google Scholar 

  106. Germain G et al (2006) Effect of laser assistance machining on residual stress and fatigue strength for a bearing steel (100Cr6) and a titanium alloy (Ti 6Al 4 V). In: materials science forum. Trans Tech Publ 524–525:569–574. https://doi.org/10.4028/www.scientific.net/msf.524-525.569

  107. Dumitrescu P, Koshy P, Stenekes J, Elbestawi MA (2006) High-power diode laser assisted hard turning of AISI D2 tool steel. Int J Mach Tools Manuf 46(15):2009–2016

    Google Scholar 

  108. Ding H, Shin YC (2010) Laser-assisted machining of hardened steel parts with surface integrity analysis. Int J Mach Tools Manuf 50(1):106–114

    Google Scholar 

  109. Germain G, Dal Santo P, Lebrun J-L (2011) Comprehension of chip formation in laser assisted machining. Int J Mach Tools Manuf 51(3):230–238

    Google Scholar 

  110. Masood S, Armitage K, Brandt M (2011) An experimental study of laser-assisted machining of hard-to-wear white cast iron. Int J Mach Tools Manuf 51(6):450–456

    Google Scholar 

  111. Rashid RR et al (2012) The effect of laser power on the machinability of the Ti-6Cr-5Mo-5 V-4Al beta titanium alloy during laser assisted machining. Int J Mach Tools Manuf 63:41–43

    Google Scholar 

  112. Rashid RR et al (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5 V–4Al beta titanium alloy. Int J Mach Tools Manuf 63:58–69

    Google Scholar 

  113. Sun S, Brandt M, Dargusch M (2010) Thermally enhanced machining of hard-to-machine materials—a review. Int J Mach Tools Manuf 50(8):663–680

    Google Scholar 

  114. Joshi A, Kansara N, Das S, Kuppan P, Venkatesan K (2014) A study of temperature distribution for laser assisted machining of ti-6al-4 v alloy. Procedia Eng 97:1466–1473

    Google Scholar 

  115. Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti–6Al–4 V) via LAM and hybrid machining. Int J Mach Tools Manuf 50(2):174–182

    Google Scholar 

  116. Germain G, Lebrun JL, Braham-Bouchnak T, Bellett D, Auger S (2008) Laser-assisted machining of Inconel 718 with carbide and ceramic inserts. Int J Mater Form 1(1):523–526

    Google Scholar 

  117. Attia H, Tavakoli S, Vargas R, Thomson V (2010) Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann 59(1):83–88

    Google Scholar 

  118. Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–54

    Google Scholar 

  119. Venkatesan K (2017) The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd: YAG laser source. J Adv Res 8(4):407–423

    Google Scholar 

  120. Garcí V et al (2013) Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int J Mach Tools Manuf 74:19–28

    Google Scholar 

  121. Tadavani SA, Razavi RS, Vafaei R (2017) Pulsed laser-assisted machining of Inconel 718 superalloy. Opt Laser Technol 87:72–78

    Google Scholar 

  122. Park S, Wei Y, Jin X (2018) Direct laser assisted machining with a sapphire tool for bulk metallic glass. CIRP Ann 67(1):193–196

    Google Scholar 

  123. Shahinian H et al (2019) Microlaser assisted diamond turning of precision silicon optics. Opt Eng 58(9):092607

    Google Scholar 

  124. Kovalchenko A (2013) Studies of the ductile mode of cutting brittle materials (a review). J Superhard Mater 35(5):259–276

    Google Scholar 

  125. Patten JA et al (2011) The effects of laser heating on the material removal process in Si and SiC nanomachining. in Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia, USA

  126. Mohammadi H, Patten JA (2017) Effect of thermal softening on anisotropy and ductile mode cutting of sapphire using micro-laser assisted machining. J Micro Nano-Manuf 5(1):011007

    Google Scholar 

  127. Ravindra D, Virkar S, Patten J (2011) Ductile mode micro laser assisted machining of silicon carbide. In: Properties and applications of silicon carbide. Rosario Gerhardt, IntechOpen. https://doi.org/10.5772/15683. Available from: https://www.intechopen.com/books/properties-and-applications-of-silicon-carbide/ductile-mode-micro-laser-assisted-machining-of-silicon-carbide

  128. Guerrini G, Lutey AHA, Melkote SN, Fortunato A (2018) High throughput hybrid laser assisted machining of sintered reaction bonded silicon nitride. J Mater Process Technol 252:628–635

    Google Scholar 

  129. Banik S et al (2018) Recent trends in laser assisted machining of ceramic materials. Mater Today Proc 5(9):18459–18467

    Google Scholar 

  130. Omidi, S., Thermal study of laser-assisted machining of silicon nitride. 2015.

    Google Scholar 

  131. Langan SM, Ravindra D, Mann AB (2018) Mitigation of damage during surface finishing of sapphire using laser-assisted machining. Precis Eng

  132. Sofuoğlu MA, Çakır FH, Gürgen S, Orak S, Kuşhan MC (2018) Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. Int J Adv Manuf Technol 95(1-4):83–97

    Google Scholar 

  133. Yip W, S. To (2017) Reduction of material swelling and recovery of titanium alloys in diamond cutting by magnetic field assistance. J Alloys Compd 722:525–531

    Google Scholar 

  134. Lauwers B, Klocke F, Klink A, Tekkaya AE, Neugebauer R, Mcintosh D (2014) Hybrid processes in manufacturing. CIRP Ann 63(2):561–583

    Google Scholar 

  135. Kumar P, Mishra A, Watt T, Dutta I, Bourell DL, Sahaym U (2013) Electromagnetic jigsaw: Metal-cutting by combining electromagnetic and mechanical forces. Procedia CIRP 6:600–604

    Google Scholar 

  136. Yeo S, Murali M, Cheah H (2004) Magnetic field assisted micro electro-discharge machining. J Micromech Microeng 14(11):1526–1529

    Google Scholar 

  137. Philip J, Shima P, Raj B (2007) Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl Phys Lett 91(20):203108

    Google Scholar 

  138. Philip J, Shima P, Raj B (2008) Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19(30):305706

    Google Scholar 

  139. Altan CL, Elkatmis A, Yüksel M, Aslan N, Bucak S (2011) Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids. J Appl Phys 110(9):093917

    Google Scholar 

  140. Nkurikiyimfura I, Wang Y, Pan Z (2013) Heat transfer enhancement by magnetic nanofluids—a review. Renew Sust Energ Rev 21:548–561

    Google Scholar 

  141. Nkurikiyimfura I, Wang Y, Pan Z (2013) Effect of chain-like magnetite nanoparticle aggregates on thermal conductivity of magnetic nanofluid in magnetic field. Exp Thermal Fluid Sci 44:607–612

    Google Scholar 

  142. Shimotomai M, Maruta K, Mine K, Matsui M (2003) Formation of aligned two-phase microstructures by applying a magnetic field during the austenite to ferrite transformation in steels. Acta Mater 51(10):2921–2932

    Google Scholar 

  143. Tolbert SH et al (1997) Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278(5336):264–268

    Google Scholar 

  144. Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 69(13):1966–1968

    Google Scholar 

  145. Ferreira J et al (1988) Magnetic field alignment of high-T c superconductorsRBa 2 Cu 3 O 7–δ (R = rare earth). Appl Phys A 47(1):105–110

    Google Scholar 

  146. Sodano HA, Bae J-S (2004) Eddy current damping in structures. Shock Vibration Digest 36(6):469–478

    Google Scholar 

  147. Sodano HA, Bae JS, Inman DJ, Belvin WK (2006) Improved concept and model of eddy current damper. J Vib Acoust 128(3):294–302

    Google Scholar 

  148. Bae J-S, Kwak MK, Inman DJ (2005) Vibration suppression of a cantilever beam using eddy current damper. J Sound Vib 284(3-5):805–824

    Google Scholar 

  149. Liu C, Jiang K, Zhang Y (2011) Design and use of an eddy current retarder in an automobile. Int J Automot Technol 12(4):611–616

    Google Scholar 

  150. Jou M, Shiau J-K, Sun C-C (2006) Design of a magnetic braking system. J Magn Magn Mater 304(1):e234–e236

    Google Scholar 

  151. Davoodi B, Tazehkandi AH (2014) Experimental investigation and optimization of cutting parameters in dry and wet machining of aluminum alloy 5083 in order to remove cutting fluid. J Clean Prod 68:234–242

    Google Scholar 

  152. Zoya Z, Krishnamurthy R (2000) The performance of CBN tools in the machining of titanium alloys. J Mater Process Technol 100(1-3):80–86

    Google Scholar 

  153. Wang Z, Rahman M, Wong Y (2005) Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys. Wear 258(5-6):752–758

    Google Scholar 

  154. Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439(7079):957–960

    Google Scholar 

  155. Tang Q, Yin S, Chen F, Huang S, Luo H (2018) New technology for cutting ferrous metal with diamond tools. Diam Relat Mater 88:32–42

    Google Scholar 

  156. Li Z et al (2013) Review of diamond-cutting ferrous metals. Int J Adv Manuf Technol 68(5-8):1717–1731

    Google Scholar 

  157. Wang J, Zhang X, Fang F, Chen R (2019) Diamond cutting of micro-structure array on brittle material assisted by multi-ion implantation. Int J Mach Tools Manuf 137:58–66

    Google Scholar 

  158. Chemkhi M, Retraint D, Roos A, Garnier C, Waltz L, Demangel C, Proust G (2013) The effect of surface mechanical attrition treatment on low temperature plasma nitriding of an austenitic stainless steel. Surf Coat Technol 221:191–195

    Google Scholar 

  159. Xu W, Liu X, Song J, Wu L, Sun J (2012) Friction and wear properties of Ti6Al4V/WC-Co in cold atmospheric plasma jet. Appl Surf Sci 259:616–623

    Google Scholar 

  160. Wang J, Zhang X, Fang F (2016) Molecular dynamics study on nanometric cutting of ion implanted silicon. Comput Mater Sci 117:240–250

    Google Scholar 

  161. Fang F et al (2011) Nanometric cutting of single crystal silicon surfaces modified by ion implantation. CIRP Ann 60(1):527–530

    Google Scholar 

  162. Xiao Y et al (2013) The study of Ga+ FIB implanting crystal silicon and subsequent annealing. Nucl Instrum Methods Phys Res, Sect B 307:253–256

    Google Scholar 

  163. Wang J, Fang F, Zhang X (2015) An experimental study of cutting performance on monocrystalline germanium after ion implantation. Precis Eng 39:220–223

    Google Scholar 

  164. Masuda K et al (2002) Fabrication of Ge nanocrystals in SiO2 films by ion implantation: control of size and position. J Non-Cryst Solids 299:1079–1083

    Google Scholar 

  165. Xiao G, S. To, Jelenković E (2015) Effects of non-amorphizing hydrogen ion implantation on anisotropy in micro cutting of silicon. J Mater Process Technol 225:439–450

    Google Scholar 

  166. Wang J, Fang F, Zhang X (2017) Nanometric cutting of silicon with an amorphous-crystalline layered structure: a molecular dynamics study. Nanoscale Res Lett 12(1):41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrokh Hatefi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatefi, S., Abou-El-Hossein, K. Review of non-conventional technologies for assisting ultra-precision single-point diamond turning. Int J Adv Manuf Technol 111, 2667–2685 (2020). https://doi.org/10.1007/s00170-020-06240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06240-7

Keywords

Navigation