Skip to main content
Log in

Dependence upon charge of the vibrational spectra of small Polycyclic Aromatic Hydrocarbon clusters: the example of pyrene

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Infrared spectra are computed for neutral and cationic clusters of Polycyclic Aromatic Hydrocarbon molecules, namely \( {({\mathrm{C}}_{16}{\mathrm{H}}_{10})}_{n=\mathrm{1,4}}^{(0/+)}\), using the Density Functional based Tight Binding scheme combined with a Configuration Interaction (DFTB-CI) in the double harmonic approximation. Cross-comparison is carried out with DFT and simple DFTB. Similarly to the monomer cation, the IR spectra of cluster cations are characterized by a depletion of the intensity of the CH stretch modes around 3000 cm−1, with a weak revival for n = 3 and 4. The in-plane CCC modes in the region 1400–2000 cm−1 are enhanced while the CH bending modes in the range 700–1000 cm−1 are significantly weakened with respect to the monomer cation, in particular for n = 2. Finally, soft modes corresponding to diedral fluctuations of the monomers within the central stack of the ion structure, possibly mixed with monomer folding, are also observed in the region 70–120 cm−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Eaves, S.B. Dworkin, M.J. Thomson, Proc. Combust. Inst. 35, 1787 (2015)

    Google Scholar 

  2. A. Violi, S. Izvekov, Proc. Combust. Inst. 31, 529 (2007)

    Google Scholar 

  3. A. D’Anna, M. Sirignano, J. Kent, Combust. Flame 157, 2106 (2010)

    Google Scholar 

  4. T.S. Totton, A.J. Misquitta, M. Kraft, Phys. Chem. Chem. Phys. 14, 4081 (2012)

    Google Scholar 

  5. A. Raj, M. Sander, V. Janardhanan et al., Combust. Flame 157, 523 (2010)

    Google Scholar 

  6. Q. Mao, A.C.T. van Duin, K.H. Luo, Carbon 121, 380 (2017)

    Google Scholar 

  7. C. Saggese, S. Ferrario, J. Camacho et al., Combust. Flame 162, 3356 (2015)

    Google Scholar 

  8. D. Aubagnac-Karkar, A. El Bakali, P. Desgroux, Combust. Flame 189, 190 (2018)

    Google Scholar 

  9. T.S. Totton, D. Chakrabarti, A.J. Misquitta et al., Combust. Flame 157, 909 (2010)

    Google Scholar 

  10. C.S. Wang, N.C. Bartelt, R. Ragan et al., Carbon 129, 537 (2018)

    Google Scholar 

  11. H. Sabbah, L. Biennier, S.J. Klippenstein et al., J. Phys. Chem. Lett. 1, 2962 (2010)

    Google Scholar 

  12. E.M. Adkins, J.A. Giaccai, J.H. Miller, Proc. Combust. Inst. 36, 957 (2017)

    Google Scholar 

  13. T. Heinemann, K. Palczynski, J. Dzubiella et al., J. Chem. Phys. 143, 174110 (2015)

    ADS  Google Scholar 

  14. P. Grančič, R. Bylsma, H. Meekes et al., Cryst. Growth Des. 15, 1625 (2015)

    Google Scholar 

  15. I. Fedorov, Y. Zhuravlev, V. Berveno, Phys. Status Solidi B 249, 1438 (2012)

    ADS  Google Scholar 

  16. S.E. Fioressi, R.C. Binning, D.E. Bacelo, Chem. Phys. Lett. 454, 269 (2008)

    ADS  Google Scholar 

  17. J.C. Sancho-Garca, A.J. Pérez-Jiménez, J. Chem. Phys. 141, 134708 (2014)

    ADS  Google Scholar 

  18. Y. Yoshida, K. Isomura, H. Kishida et al., Chem. Eur. J. 22, 6023 (2016)

    Google Scholar 

  19. S. Sanyal, A.K. Manna, S.K. Pati, J. Phys. Chem. C 117, 825 (2013)

    Google Scholar 

  20. R. Scholz, R. Luschtinetz, G. Seifert et al., J. Phys.: Condens. Matter 25, 473201 (2013)

    Google Scholar 

  21. A.A.M.H.M. Darghouth, M.E. Casida, W. Taouali et al., Computation (2015)

  22. S.O. Baek, R.A. Field, M.E. Goldstone et al., Water Air Soil. Pollut. 60, 279 (1991)

    ADS  Google Scholar 

  23. C.-T. Li, H.-K. Zhuang, L.-T. Hsieh et al., Environ. Int. 27, 61 (2001)

    Google Scholar 

  24. M. Blanchard, M.-J. Teil, E. Guigon et al., Sci. Total Environ. 375, 232 (2007)

    ADS  Google Scholar 

  25. A. Birgül, Y. Tasdemir, S.S. Cindoruk, Atmos. Res. 101, 341 (2011)

    Google Scholar 

  26. A.D.P. Netto, T.M. Krauss, I.F. Cunha et al., Water Air Soil. Pollut. 176, 57 (2006)

    ADS  Google Scholar 

  27. A. Léger, J.L. Puget, A&A 137, L5 (1984)

    ADS  Google Scholar 

  28. L.J. Allamandola, A.G.G.M. Tielens, J.R. Barker, ApJ 290, L25 (1985)

    ADS  Google Scholar 

  29. G.P. van der Zwet, L.J. Allamandola, Astron. Astrophys. 146, 76 (1985)

    ADS  Google Scholar 

  30. A. Leger, L. D’Hendecourt, Astron. Astrophys. 146, 81 (1985)

    ADS  Google Scholar 

  31. M.K. Crawford, A.G.G.M. Tielens, L.J. Allamandola, Astrophys. J. Lett. 293, L45 (1985)

    ADS  Google Scholar 

  32. F. Salama, E.L.O. Bakes, L.J. Allamandola et al., ApJ 458, 621 (1996)

    ADS  Google Scholar 

  33. M. Rapacioli, C. Joblin, A&A, 429, 193 (2005)

    ADS  Google Scholar 

  34. O. Berné, C. Joblin, Y. Deville et al., A&A 469, 575 (2007)

    ADS  Google Scholar 

  35. O. Berné, C. Joblin, M. Rapacioli et al., A&A 479, L41 (2008)

    ADS  Google Scholar 

  36. Y.M. Rhee, T.J. Lee, M.S. Gudipati et al., Proc. Natl. Acad. Sci. Unit. States Am. 104, 5274 (2007)

    ADS  Google Scholar 

  37. A.K. Lemmens, S. Gruet, A.L. Steber et al., Phys. Chem. Chem. Phys. 21, 3414 (2019)

    Google Scholar 

  38. T. Chen, ApJ 866, 113 (2018)

    ADS  Google Scholar 

  39. J. Zhen, T. Chen, A.G.G.M. Tielens, Astrophys. J. 863, 128 (2018)

    ADS  Google Scholar 

  40. S.R. Langhoff, J. Phys. Chem. 100, 2819 (1996)

    Google Scholar 

  41. M. Vala, J. Szczepanski, F. Pauzat et al., J. Phys. Chem. 98, 9187 (1994)

    Google Scholar 

  42. C.W. Bauschlicher, S.R. Langhoff, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 53, 1225(1997)

    ADS  Google Scholar 

  43. C.W. Bauschlicher Jr, Astrophys. J. 564, 782 (2002)

    ADS  Google Scholar 

  44. M. Bahou, Y.-J. Wu, Y.-P. Lee, J. Phys. Chem. Lett. 4, 1989 (2013)

    Google Scholar 

  45. F. Calvo, M. Basire, P. Parneix, J. Phys. Chem. A 115, 8845 (2011)

    Google Scholar 

  46. C.-H. Chin, S.H. Lin, Phys. Chem. Chem. Phys. 18, 14569 (2016)

    Google Scholar 

  47. I. Garkusha, J. Fulara, J.P. Maier, J. Mol. Struct. 1025, 147 (2012)

    ADS  Google Scholar 

  48. F.X. Hardy, O. Gause, C.A. Rice et al., Astrophys. J. Lett. 778, L30 (2013)

    ADS  Google Scholar 

  49. M. Rapacioli, F. Calvo, F. Spiegelman et al., J. Phys. Chem. A 109, 2487 (2005)

    Google Scholar 

  50. M. Rapacioli, F. Spiegelman, D. Talbi et al., J. Chem. Phys. 130, 244304 (2009)

    ADS  Google Scholar 

  51. Y. Zhao, D.G. Truhlar, J. Phys. Chem. C 112, 4061 (2008)

    Google Scholar 

  52. J. Hernández-Rojas, F. Calvo, D.J. Wales, Phys. Chem. Chem. Phys. 18, 13736 (2016)

    Google Scholar 

  53. R. Podeszwa, J. Chem. Phys. 132, 044704 (2010)

    ADS  Google Scholar 

  54. M. Bartolomei, F. Pirani, J.M.C. Marques, J. Phys. Chem. C 121, 14330 (2017)

    Google Scholar 

  55. O.I. Obolensky, V.V. Semenikhina, A.V. Solov’yov et al., Int. J. Quantum Chem. 107, 1335 (2007)

    ADS  Google Scholar 

  56. J. Hernández-Rojas, F. Calvo, S. Niblett et al., Phys. Chem. Chem. Phys. 19, 1884 (2017)

    Google Scholar 

  57. J.D. Herdman, J.H. Miller, J. Phys. Chem. A 112, 6249 (2008)

    Google Scholar 

  58. L. Pascazio, M. Sirignano, A. D’Anna, Combust. Flame 185, 53 (2017)

    Google Scholar 

  59. A. Ricca, J. Charles, W. Bauschlicher, L.J. Allamandola, ApJ 776, 31 (2013)

    ADS  Google Scholar 

  60. J.E. Roser, A. Ricca, ApJ 801, 108 (2015)

    ADS  Google Scholar 

  61. M. Rapacioli, F. Calvo, C. Joblin et al., J. Phys. Chem. A 111, 2999 (2007)

    Google Scholar 

  62. J. Gräfenstein, E. Kraka, D. Cremer, J. Chem. Phys. 120, 524 (2004)

    ADS  Google Scholar 

  63. A. Savin, in Recent developments and applications of modern Density Functional Theory, edited by J. Seminario (Elsevier, Amsterdam, 1996), pp. 327–357

  64. T. Leininger, H. Stoll, H.-J. Werner et al., Chem. Phys. Lett. 275, 151 (1997)

    ADS  Google Scholar 

  65. E. Goll, H.-J. Werner, H. Stoll, Phys. Chem. Chem. Phys. 7, 3917 (2005)

    Google Scholar 

  66. J. Toulouse, F. Colonna, A. Savin, Phys. Rev. A 70, 062505 (2004)

    ADS  Google Scholar 

  67. V. Lutsker, B. Aradi, T.A. Niehaus, J. Chem. Phys. 143, 184107 (2015)

    ADS  Google Scholar 

  68. D. Porezag, T. Frauenheim, T. Köhler et al., Phys. Rev. B 51, 12947 (1995)

    ADS  Google Scholar 

  69. G. Seifert, D. Porezag, T. Frauenheim, Int. J. Quantum Chem. 58, 185 (1996)

    Google Scholar 

  70. M. Elstner, D. Porezag, G. Jungnickel et al., Phys. Rev. B 58, 7260 (1998)

    ADS  Google Scholar 

  71. F. Spiegelman, N. Tarrat, J. Cuny et al., Adv. Phys. X 5, 1710252 (2020)

    Google Scholar 

  72. M. Rapacioli, F. Spiegelman, A. Scemama et al., J. Chem. Theor. Comput. 7, 44 (2011)

    Google Scholar 

  73. Q. Wu, C.-L. Cheng, T. Van Voorhis, J. Chem. Phys. 127, 164119 (2007)

    ADS  Google Scholar 

  74. L. Dontot, F. Spiegelman, M. Rapacioli, J. Phys. Chem. A 123, 9531 (2019)

    Google Scholar 

  75. S. Zamith, M.-C. Ji, J.-M. L’Hermite et al., J. Chem. Phys. 151, 194303 (2019)

    ADS  Google Scholar 

  76. C. Joblin, L. Dontot, G.A. Garcia et al., J. Phys. Chem. Lett. 8, 3697 (2017)

    Google Scholar 

  77. M.J. Frisch et al., Gaussian 03 Revision A.1 (Gaussian Inc., Wallingford CT, 2016)

  78. J. Frenzel, A.F. Oliveira, N. Jardillier et al., Semi-relativistic, self-consistent charge Slater-Koster tables for density-functional based tight-binding (DFTB) for materials science simulations (TU Dresden, 2004–2009)

  79. A. Simon, M. Rapacioli, E. Michoulier et al., Mol. Simul. 45, 249 (2019)

    Google Scholar 

  80. E. Michoulier, N. Ben Amor, M. Rapacioli et al., Phys. Chem. Chem. Phys. 20, 11941 (2018)

    Google Scholar 

  81. B. Joalland, M. Rapacioli, A. Simon et al., J. Phys. Chem. A 114, 5846 (2010)

    Google Scholar 

  82. T. Heine, M. Rapacioli, S. Patchkovskii et al., deMon-Nano Experiment 2009, 2009, http://physics.jacobs-university.de/theine/research/deMon/

  83. C. Joblin, L. D’Hendecourt, A. Leger et al., A&A 281, 923 (1994)

    ADS  Google Scholar 

  84. D.J. Cook, S. Schlemmer, N. Balucani et al., J. Phys. Chem. A 102, 1465 (1998)

    Google Scholar 

  85. H. Kim, D. Wagner, R. Saykally, Phys. Rev. Lett. 86, 5691 (2001)

    ADS  Google Scholar 

  86. E. Maltseva, A. Petrignani, A. Candian et al., Astrophys. J. 814, 23 (2015)

    ADS  Google Scholar 

  87. C.J. Mackie, A. Candian, X. Huang et al., J. Chem. Phys. 145, 084313 (2016)

    ADS  Google Scholar 

  88. G. Mulas, C. Falvo, P. Cassam-Chena et al., J. Chem. Phys. 149, 144102 (2018)

    ADS  Google Scholar 

  89. H. Torii, Y. Ueno, A. Sakamoto et al., J. Phys. Chem. A 103, 5557 (1999)

    Google Scholar 

  90. W.-K. Wong, E.F. Westrum, J. Chem. Thermodyn. 3, 105 (1971)

    Google Scholar 

  91. A. Simon, M. Rapacioli, M. Lanza et al., Phys. Chem. Chem. Phys. 13, 3359 (2011)

    Google Scholar 

  92. A. Simon, C. Joblin, N. Polfer et al., J. Phys. Chem. A 112, 8551 (2008)

    Google Scholar 

  93. A. Simon, M. Rapacioli, J. Mascetti et al., Phys. Chem. Chem. Phys. 14, 6771 (2012)

    Google Scholar 

  94. B. Joalland, A. Simon, C.J. Marsden et al., A&A 494, 969 (2009)

    ADS  Google Scholar 

  95. C. Iftner, A. Simon, K. Korchagina et al., J. Chem. Phys. 140, 034301 (2014)

    ADS  Google Scholar 

  96. A. Simon, C. Iftner, J. Mascetti et al., J. Phys. Chem. A 119, 2449 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Rapacioli.

Additional information

Contribution to the Topical Issue “Atomic Cluster Collisions (2019)”, edited by Alexey Verkhovtsev, Pablo de Vera, Nigel J. Mason, Andrey V. Solov’yov.

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjd/e2020-10081-0.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dontot, L., Spiegelman, F., Zamith, S. et al. Dependence upon charge of the vibrational spectra of small Polycyclic Aromatic Hydrocarbon clusters: the example of pyrene. Eur. Phys. J. D 74, 216 (2020). https://doi.org/10.1140/epjd/e2020-10081-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10081-0

Navigation