Skip to main content
Log in

Meiotic Instability Generates a Pathological Condition in Mammalian Ovum

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Maintenance of metaphase-II (M-II) arrest in ovum is required to present itself as a right gamete for successful fertilization in mammals. Surprisingly, instability of meiotic cell cycle results in spontaneous exit from M-II arrest, chromosomal scattering and incomplete extrusion of second polar body (PB-II) without forming pronuclei so called abortive spontaneous ovum activation (SOA). It remains unclear what causes meiotic instability in freshly ovulated ovum that results in abortive SOA. We propose the involvement of various signal molecules such as reactive oxygen species (ROS), cyclic 3′,5′ adenosine monophosphate (cAMP) and calcium (Ca2+) in the induction of meiotic instability and thereby abortive SOA. These signal molecules through their downstream pathways modulate phosphorylation status and activity of cyclin dependent kinase (cdk1) as well as cyclin B1 level. Changes in phosphorylation status of cdk1 and its activity, dissociation and degradation of cyclin B1 destabilize maturation promoting factor (MPF). The premature MPF destabilization and defects in other cell cycle regulators possibly cause meiotic instability in ovum soon after ovulation. The meiotic instability results in a pathological condition of abortive SOA and deteriorates ovum quality. These ova are unfit for fertilization and limit reproductive outcome in several mammalian species including human. Therefore, global attention is required to identify the underlying causes in greater details in order to address the problem of meiotic instability in ova of several mammalian species icluding human. Moreover, these activated ova may be used to create parthenogenetic embryonic stem cell lines in vitro for the use in regenerative medicine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

M-II:

metaphase-II

M-III:

metaphase-III

SOA:

spontaneous ovum activation

ROS:

Reactive oxygen species

cAMP:

cyclic 3′,5′ adenosine monophosphate

Ca2+ :

calcium

cdk1:

cyclin- dependent kinase

MPF:

maturation promoting factor

PB-I:

first polar body

PB-II:

second polar body

Emi2:

early meittic inhibitor 2

MAPK:

mitogen activated protein kinase

MMP:

Mitochondrial membrane potential

ΔΨm:

negative trans-membrane potential of mitochondria

H2O2 :

hydrogen peroxide

CaMK-II:

CaM-dependent kinase-II

CSFs:

cytostatic factors including

APC/C:

anaphase promoting complex/cyclosome

MAD2:

mitotic arrest deficient protein

ARTs:

assisted reproductive technologies

IVF:

in vitro fertilization

ICSI:

intra-cytoplasmic sperm injection

SCNT:

somatic cell nuclear transfer

References

  1. Tripathi, A., Premkumar, K.V., Chaube, S.K. (2010). Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol. 223; 592-600.

  2. Sanders, J. R., & Swann, K. (2016). Molecular triggers of ovum activation at fertilization in mammals. Reproduction, 152, R41–R50.

    CAS  PubMed  Google Scholar 

  3. Zernika-Goetz, M. (1991). Spontaneous and induced activation of rat oocytes. Molecular Reproduction Development, 28, 169–176.

    Google Scholar 

  4. Ross, P. J., Yabuuchi, A., & Cibelli, J. B. (2006). Oocyte spontaneous activation in different rat strains. Cloning and Stem Cells, 8, 275–282.

    CAS  PubMed  Google Scholar 

  5. Chaube, S. K., Dubey, P. K., Mishra, S. K., & Shrivastav, T. G. (2007). Verapamil reversibly inhibits spontaneous parthenogenetic activation in aged rat eggs cultured in vitro. Cloning and Stem Cells, 9, 608–617.

    CAS  PubMed  Google Scholar 

  6. Chaube, S. K., Khatun, S., Misra, S. K., & Shrivastav, T. G. (2008). Calcium ionophore-induced egg activation and apoptosis with the generation of intracellular hydrogen peroxide. Free Radical Research, 42, 212–220.

    CAS  PubMed  Google Scholar 

  7. Chebotareva, T., Taylor, J., Mullins, J. J., & Wilmut, I. (2011). Rat eggs cannot wait: Spontaneous exit from meiotic metaphase-II arrest. Molecular Reproduction Development, 78, 795–807.

    CAS  PubMed  Google Scholar 

  8. Premkumar, K. V., & Chaube, S. K. (2013). An insufficient increase of cytosolic free calcium level results postovulatory aging-induced abortive spontaneous egg activation in rat. Journal Assisted Reproduction Genetices, 30, 117–123.

    Google Scholar 

  9. Premkumar, K. V., & Chaube, S. K. (2014). RyR channel-mediated increase of cytosolic free calcium level signals cyclin B1 degradation during abortive spontaneous egg activation in rat. In Vitro Cell & Developmental Biology-Animal, 50, 640–647.

    CAS  Google Scholar 

  10. Chaube, S. K., Premkumar, K. V., Prasad, S., Tiwari, M., Gupta, A., Sharma, A., Sahu, K., & Yadav, P. K. (2018). Inability to maintain metaphase-II arrest due to increase of reactive oxygen species in rat eggs. Reactive Oxygen Species, 5, 167–175.

    CAS  Google Scholar 

  11. Keefer, C. L., & Schuetz, A. W. (1982). Spontaneous activation of ovulated rat oocytes during in vitro culture. Journal of Experimental Zoology, 224, 371–377.

    CAS  Google Scholar 

  12. Xu, Z., Abbott, A., Kopf, G. S., Schultz, R. M., & Ducibella, T. (1997). Spontaneous activation of ovulated mouse eggs: Time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity. Biology of Reproduction, 57, 743–750.

    CAS  PubMed  Google Scholar 

  13. Lord, T., Nixon, B., Jones, K. T., & Aitken, R. J. (2013). Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biology of Reproduction, 88, 67.

    PubMed  Google Scholar 

  14. Ruddock, N. T., Machaty, Z., Cabot, R. A., & Prather, R. S. (2001). (2001). Porcine oocyte activation: Roles of calcium and pH. Molecular Reproduction Development, 59, 227–234.

    CAS  PubMed  Google Scholar 

  15. Ito, J., Shimada, M., & Terada, T. (2003). Effect of protein kinase C inhibitor on mitogen-activated protein kinase and p34cdc2 kinase activity during parthenogenetic activation of porcine oocytes by calcium ionophore. Biology of Reproduction, 69, 1675–1682.

    CAS  PubMed  Google Scholar 

  16. Ito, J., Shimada, M., & Terada, T. (2004). Mitogen-activated protein kinase kinase inhibitor suppresses cyclin B1 synthesis and reactivation of p34cdc2 kinase, which improves pronuclear formation rate in matured porcine oocytes activated by Ca2+ ionophore. Biology of Reproduction, 70, 797–804.

    CAS  PubMed  Google Scholar 

  17. Sergeev, I. N., & Norman, A. V. (2003). Calcium as a mediator of apoptosis in bovine oocytes and preimplantation embryos. Endocrine, 22, 169–176.

    CAS  PubMed  Google Scholar 

  18. Juetten, J., & Bavister, B. D. (1983). Effects of egg aging on in vitro fertilization and first cleavage division in the hamster. Gamete Research, 8, 219–230.

    Google Scholar 

  19. Lu, Q., Chen, Z. J., Gao, X., Ma, S. Y., Li, M., Hu, J. M., & Li, Y. (2006). Oocyte activation with calcium ionophore A23187 and puromycin on human oocytes that failed to fertilize after intracytoplasmic sperm injection. Zhonghua Fu Chan Ke Za Zhi, 41, 182–185.

    PubMed  Google Scholar 

  20. Escrich, L., Grau, N., Mercader, A., Rubio, C., Pellicer, A., & Escriba, M. J. (2011). Spontaneous in vitro maturation and artificial activation of human germinal vesicle oocytes recovered from stimulated cycles. Journal of Assisted Reproduction Genetices, 28, 111–117.

    Google Scholar 

  21. Combelles, C. M., Cekleniak, N. A., Racowsky, C., & Albertini, D. F. (2002). Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes. Human Reproduction, 17, 1006–1016.

    CAS  PubMed  Google Scholar 

  22. Combelles, C. M., Fissore, R. A., Albertini, D. F., & Racowsky, C. (2005). In vitro maturation of human oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Human Reproduction, 20, 1349–1358.

    CAS  PubMed  Google Scholar 

  23. Combelles, C. M., Kearns, W. G., Fox, J. H., & Racowsky, C. (2011). Cellular and genetic analysis of oocytes and embryo in a case of spontaneous oocyte activation. Human Reproduction, 26, 545–552.

    PubMed  Google Scholar 

  24. Socolov, R., Ebner, T., Gorduza, V., Martiniuc, V., Angioni, S., & Socolov, D. (2015). Self-oocyte activation and parthenogenesis an unusual outcome of a misconducted IVF cycle. Gynecology Endocrinology, 31, 529–530.

    Google Scholar 

  25. Madgwick, S., & Jones, K. T. (2007). How eggs arrest at metaphase II: MPF stabilization plus APC/C inhibition equals cytostatic factor. Cell Division, 2, 4–11.

    PubMed  PubMed Central  Google Scholar 

  26. Prasad, S., Tiwari, M., Koch, B., & Chaube, S. K. (2015a). Morphological, cellular and molecular changes during postovulatory egg aging in mammals. Journal of Biomedical Science, 22, 36.

    PubMed  PubMed Central  Google Scholar 

  27. Chaube, S. K., Prasad, S., Tiwari, M., & Gupta, A. (2016). Rat: An interesting model to study oocyte meiosis in mammals. Research and Reviews: Journal of Zoological Sciences, 4, 25–27.

    Google Scholar 

  28. Prasad, S., Tiwari, M., Tripathi, A., Pandey, A. N., & Chaube, S. K. (2015b). Changes in signal molecules and maturation promoting factor levels associate with spontaneous resumption of meiosis in rat oocytes. Cell Biology International, 39, 759–769.

    CAS  PubMed  Google Scholar 

  29. Prasad, S., & Chaube, S. K. (2017). Increased telomerase reverse transcriptase expression associates with spontaneous exit from M-II arrest in rat eggs. Cellular Reprogramming, 19, 27–34.

    CAS  PubMed  Google Scholar 

  30. Sharma, A., Tiwari, M., Gupta, A., Pandey, A., Yadav, P. K., & Chaube, S. K. (2018). Oocyte journey from metaphase-I to metaphase-II in mammals. Journal of Cellular Physiology, 233, 5530–5536.

    CAS  PubMed  Google Scholar 

  31. Colledge, W. H., Carlton, M. B., Udy, G. B., & Evans, M. J. (1994). Disruption of c-Mos causes parthenogenetic development of unfertilized mouse eggs. Nature, 370, 65–68.

    CAS  PubMed  Google Scholar 

  32. Hashimoto, N., Watanabe, N., Furuta, Y., Tamemoto, H., Sagata, N., Yokoyama, M., Okazaki, K., Nagayoshi, M., Takeda, N., Ikawa, Y., & Aizawai, S. (1994). Parthenogenetic activation of oocytes in c-Mos-deficient mice. Nature, 370, 68–71.

    CAS  PubMed  Google Scholar 

  33. Hirao, Y., & Eppig, J. J. (1997). Parthenogenetic development of Mos-deficient mouse oocytes. Molecular Reproduction Development, 48, 391–396.

    CAS  PubMed  Google Scholar 

  34. Premkumar, K. V., & Chaube, S. K. (2016). Increased level of reactive oxygen species persuades postovulatory aging-mediated spontaneous egg activation in rat eggs cultured in vitro. Vitro Cell Devevelopmetal Biology- Animal, 52(5), 576–588.

    CAS  Google Scholar 

  35. Prasad, S., Koch, B., & Chaube, S. K. (2016). Maturation promoting factor destabilization persuades postovulatory aging-mediated abortive spontaneous egg activation in rat. Development Growth Differentiation, 58, 293–302.

    CAS  Google Scholar 

  36. Van Blerkom, J., Davis, P. W., & Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Human Reproduction, 10, 415–424.

    CAS  PubMed  Google Scholar 

  37. Cheon, Y. P., Kim, S. W., Kim, S. J., Yeom, Y. I., Cheong, C., & Ha, K. S. (2000). The role of rho a in the germinal vesicle breakdown of mouse oocytes. Biochemica Biophysica Research Communication, 273, 997–1002.

    CAS  Google Scholar 

  38. Bellomo, F., Piccoli, C., Cocco, T., Scacco, S., Papa, F., Gaballo, A., Boffoli, D., Signorile, A., D'Aprile, A., Scrima, R., Sardanelli, A. M., Capitanio, N., & Papa, S. (2006). Regulation by the cAMP cascade of oxygen free radical balance in mammalian cells. Antioxidants Redox Signaling, 8, 495–502.

    CAS  PubMed  Google Scholar 

  39. Tripathi, A., Khatun, S., Pandey, A. N., Misra, S. K., Chaube, R., Shrivastava, T. G., & Chaube, S. K. (2009). Intracellular levels of hydrogen peroxide and nitric oxide in oocyte at various stages of meiotic cell cycle and apoptosis. Free Radical Research, 43, 287–294.

    CAS  PubMed  Google Scholar 

  40. Piccoli, C., Scacco, S., Bellomo, F., Signorile, A., Iuso, A., Boffoli, D., Scrima, R., Capitanio, N., & Papa, S. (2006). cAMP controls oxygen metabolism in mammalian cells. FEBS Letters, 580, 4539–4543.

    CAS  PubMed  Google Scholar 

  41. Pandey, A. N., & Chaube, S. K. (2014). Increase of hydrogen peroxide level is beneficial for spontaneous resumption of meiosis from diplotene arrest in rat oocytes cultured in vitro. Bio Reseach Open Access, 3, 183–191.

    CAS  Google Scholar 

  42. Tatone, C., Emidio, G. D., Barbaro, R., Vento, M., Ciriminna, R., & Artini, P. G. (2011). Effects of reproductive aging and postovulatory aging on the maintenance of biological competence after oocyte vitrification: Insights from the mouse model. Theriogenology, 76, 864–873.

    PubMed  Google Scholar 

  43. Dai, X., Lu, Y., Zhang, M., Miao, Y., Zhou, C., Cui, Z., & Xiong, B. (2017). Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion. Human Reproduction, 32, 598–606.

    CAS  PubMed  Google Scholar 

  44. Takahashi, T., Takahashi, E., Igarashi, H., Tezuka, N., & Kurachi, H. (2003). Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Molecular Reproduction Development, 66, 143–152.

    CAS  PubMed  Google Scholar 

  45. Chaube, S. K., Khatun, S., Mishra, S. K., & Shrivastav, T. G. (2008). Calcium ionophore-induced egg activation and apoptosis are associated with the generation of intracellular hydrogen peroxide. Free Radical Research, 42, 212–220.

    CAS  PubMed  Google Scholar 

  46. Abu Soud, H. M., & Stuehr, D. J. (1993). Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proceeding of National Acadamy of Science USA, 90, 10769–10772.

    CAS  Google Scholar 

  47. Zhang, N., Wakai, T., & Fissore, R. A. (2011). Caffeine alleviates the deterioration of Ca (2+) release mechanisms and fragmentation of in vitro-aged mouse eggs. Molecular Reproduction Development, 78, 684–701.

    CAS  PubMed  Google Scholar 

  48. Chakraborti, T., Das, S., Mondal, M., Roychoudhury, S., & Chakraborti, S. (1999). Oxidation, mitochondria, and calcium; an overview. Cell Signaling, 11, 77–85.

    CAS  Google Scholar 

  49. Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology Medicine, 29, 222–230.

    CAS  PubMed  Google Scholar 

  50. Tang, D. W., Fang, Y., Liu, Z. X., Wu, Y., Wang, X. L., Zhao, S., Han, G. C., & Zeng, S. M. (2013). The disturbances of endoplasmic reticulum calcium homeostasis caused by increased intracellular reactive oxygen species contributes to fragmentation in aged porcine oocytes. Biology of Reproduction, 89, 124.

    PubMed  Google Scholar 

  51. Ito, J., Kaneko, R., & Hirabayashi, M. (2006). The regulation of calcium/calmodulin-dependent protein kinase II during oocyte activation in the rat. Journal of Reproduction Development, 52, 439–447.

    CAS  Google Scholar 

  52. Yoo, J. C., & Smith, L. C. (2007). Extracellular calcium induces activation of Ca2+/calmodulin dependent protein kinase II and mediates spontaneous activation in rat oocytes. Biochemica Biophysica Research Communication, 359, 854–859.

    CAS  Google Scholar 

  53. Zhang, C. X., Cui, W., Zhang, M., Zhang, J., Wang, T. Y., Zhu, J., Jiao, G. Z., & Tan, J. H. (2014). Role of Na+/Ca2+ exchanger (NCX) in modulating postovulatory aging of mouse and rat oocytes. PLoS One, 9, e93446.

    PubMed  PubMed Central  Google Scholar 

  54. Zhang, D., Ma, W., Li, Y. H., Hou, Y., Li, S. W., Meng, X. Q., Sun, X. F., Sun, Q. Y., & Wang, W. H. (2004). Intra-oocyte localization of MAD2 and its relationship with kinetochores, microtubules, and chromosomes in rat oocytes during meiosis I. Biology of Reproduction, 71, 740–748.

    CAS  PubMed  Google Scholar 

  55. Homer, H. A., McDougall, A., Levasseur, M., Murdoch, A. P., & Herbert, M. (2005). Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis I mouse oocytes. Reproduction, 130, 829–843.

    CAS  PubMed  Google Scholar 

  56. Schmidt, A., Duncan, P. I., Rauh, N. R., Sauer, G., Fry, A. M., Nigg, E. A., & Mayer, T. U. (2005). Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes & Development, 19, 502–513.

    CAS  Google Scholar 

  57. Sako, K., Suzuki, K., Isoda, M., Yoshikai, S., Senoo, C., Nakajo, N., Ohe, M., & Sagata, N. (2014). Emi2 mediates meiotic MII arrest by competitively inhibiting the binding of Ube2S to the APC/C. Nature Communications, 5, 3667.

    PubMed  Google Scholar 

  58. Rauh, N. R., Schmidt, A., Bormann, J., Nigg, E. A., & Mayer, T. U. (2005). Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature, 437, 1048–1052.

    CAS  PubMed  Google Scholar 

  59. Gautier, J., Minshull, J., Lohka, M., Glotzer, M., Hunt, T., & Maller, J. L. (1990). Cyclin is a component of maturation-promoting factor from Xenopus. Cell, 60, 487–494.

    CAS  PubMed  Google Scholar 

  60. Kubiak, J. Z., Ciemerych, M. A., Hupalowska, A., Sikora-Polaczek, M., & Polanski, Z. (2008). On the transition from the meiotic cell cycle during early mouse development. International Journal of Developmental Biology, 52, 201–217.

    Google Scholar 

  61. Oh, J. S., Susor, A., & Conti, M. (2011). Protein tyrosine kinase Wee1B is essential for metaphase II exit in mouse oocytes. Science, 332, 462–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Oh, J. S., Susor, A., Schindler, K., Schultz, R. M., & Conti, M. (2013). Cdc25A activity is required for the metaphase II arrest in mouse oocytes. J Cell Science, 126, 1081–1085.

    CAS  PubMed  Google Scholar 

  63. Davydenko, O., Schultz, R. M., & Lampson, M. A. (2013). Increased CDK1 activity determines the timing of kinetochore-microtubule attachments in meiosis. Journal of Cell Biology, 202, 221–229.

    CAS  Google Scholar 

  64. Tripathi, A., & Chaube, S. K. (2015). Roscovitine inhibits extrusion of second polar body and induces apoptosis in rat eggs cultured in vitro. Pharmacological Report, 67, 866–874.

    CAS  Google Scholar 

  65. Sullivan, S. G., Chiu, D. T., Errasfa, M., Wang, J. M., Qi, J. S., & Stern, A. (1994). Effects of H2O2 on protein tyrosine phosphatase activity in HER14 cells. Free Radical Biology Medicine, 16, 399–403.

    CAS  PubMed  Google Scholar 

  66. Fukuda, A., Roudebush, W. E., & Thatcher, S. S. (1992). Influences of in vitro oocyte aging on microfertilization in the mouse with reference to zona hardening. Journal of Assisted Reproduction Genetics, 9, 378–383.

    CAS  PubMed  Google Scholar 

  67. Yanagida, K., Yazawa, H., Katayose, H., Suzuki, K., Hoshi, K., & Sato, A. (1998). Influence of oocyte preincubation time on fertilization after intracytoplasmic sperm injection. Human Reproduction, 13, 2223–2226.

    CAS  PubMed  Google Scholar 

  68. Hayes, E., Galea, S., Verkuylen, A., Pera, M., Morrison, J., Lacham-Kaplan, O., & Trounson, A. (2001). Nuclear transfer of adult and genetically modified fetal cells of the rat. Physiological Genomics, 5, 193–204.

    CAS  PubMed  Google Scholar 

  69. Miao, Y. L., Kikuchi, K., Sun, Q. Y., & Schatten, H. (2009). Oocyte aging: Cellular and molecular changes, developmental potential and reversal possibility. Human Reproduction Update, 15, 573–585.

    PubMed  Google Scholar 

  70. Osman, E. K., Hong, K. H., & Scott, R. T. (2019). A case of recurrent spontaneous parthenogenetic oocyte activation. Reproductive Biomedicine Online, 39, E7–E8. https://doi.org/10.1016/j.rbmo.2019.07.018.

    Article  Google Scholar 

  71. Ye, Y., Li, N., Yan, X., Wu, R., Zhou, W., Cheng, L., & Li, Y. (2020). Genetic analysis of embryo in a human case of spontaneous oocyte activation: A case report. Gynecology Endocrinology, 36, 294–296.

    CAS  Google Scholar 

  72. Sun, X. S., Yue, K. Z., Zhou, J. B., Chen, Q. X., & Tan, J. H. (2002). In vitro spontaneous parthenogenetic activation of golden hamster oocytes. Theriogenology, 57, 845–851.

    CAS  PubMed  Google Scholar 

  73. Jiang, H., Wang, C., Guan, J., Wang, L., & LI, Z. (2015). Changes of spontaneous parthenogenetic activation and development potential of golden hamster oocytes during the aging process. Acta Histochemica, 117, 104–110.

    PubMed  Google Scholar 

  74. Abdoon, A. S. S., Kandil, O. M., & Zeng, S. (2020). Intrafollicular spontaneous parthenogenetic development of dromedary camel oocytes. Molecular Reproduction Development, 87, 704–710.

    CAS  PubMed  Google Scholar 

  75. Zhou, G., Wei, H., Wang, X., Yang, M., Bunch, T. D., Polejaeva, I. A., White, K. L., Wang, Z., & Meng, Q. (2018). Serial culture is critical for in vitro development of parthenogenetic embryos in the golden syrian hamster. Cellular Reprogramming, 20, 187–195.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Espejel, S., Eckardt, S., Harbell, J., Roll, G. R., JohnMcLaughlin, K., & Willenbring, H. (2014). Parthenogenetic embryonic stem cells are an effective cell source for therapeutic liver repopulation. Stem Cells, 32, 1983–1988.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu, Z., & Han, B. (2016). Advantages and limitations of the parthenogenetic embryonic stem cells in cell therapy. Journal of Reproduction and Contraception, 27, 118–124.

    Google Scholar 

  78. Bos-Mikich, A., Bressan, F.F., Ruggeri, R.R., Watanabe, Y., Flávio, V., Meirelles, F.V. (2016). Parthenogenesis and human assisted reproduction. Stem Cells International ID: 1970843; https://doi.org/10.1155/2016/1970843.

Download references

Funding

This study was financially supported by Department of Biotechnology, Ministry of Science and Technology, Government of India (Grant no. BT/PR4225/AAQ/1/492/2011).

Author information

Authors and Affiliations

Authors

Contributions

KVP, SP suggested the structure. DKP searched the literature and MT, ANP wrote the initial draft of manuscript. AG, AS, PKY, AKY and AKP revised and finished the final version of manuscript under the supervision of SKC. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shail K. Chaube.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premkumar, K.V., Prasad, S., Tiwari, M. et al. Meiotic Instability Generates a Pathological Condition in Mammalian Ovum. Stem Cell Rev and Rep 17, 777–784 (2021). https://doi.org/10.1007/s12015-020-10072-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10072-z

Keywords

Navigation