Skip to main content
Log in

Zirconium nitride as a highly efficient nitrogen source to synthesize the metal nitride clusterfullerenes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal nitride clusterfullerenes (NCFs) have significant applications in molecular electronics, biomedical imaging, and nonlinear optical devices due to their unique structures. However, their wide applications are limited by the production quantity. In this work, the yields of metal nitride clusterfullerenes M3N@C80 (M=Y, Sc, Gd) were greatly enhanced by utilizing zirconium nitride (ZrN) as an efficient nitrogen source for the arc-discharge method. Compared with the traditional synthetic route using N2 gas as nitrogen source, the ZrN inside graphite tube can be vaporized simultaneously with metal and graphite, and then afford the high concentration of nitrogen atoms in the arc region, which will promote the formation of metal nitride clusterfullerenes finally. The ZrN can promote the yields of Y3N@C80, Sc3N@C80 and Gd3N@C80, revealing the universal applicability of ZrN as a highly efficient nitrogen source. Specifically, the yield of Sc3N@C80 was greatly improved when adding ZrN, and it shows over double yield compared to traditional synthetic route using N2 gas. In addition, ZrN can also enhance the yields of paramagnetic azametallofullerene M2@C79N due to the high concentration of nitrogen atoms in the arc region. This new method enhances the production quantity of metal nitride clusterfullerenes and azametallofullerenes, and it will greatly promote the research and application of these molecular carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC. Nature, 1999, 402: 898

    Article  CAS  Google Scholar 

  2. Cardona CM, Elliott B, Echegoyen L. J Am Chem Soc, 2006, 128: 6480–6485

    Article  CAS  Google Scholar 

  3. Li T, Murphy S, Kiselev B, Bakshi KS, Zhang J, Eltahir A, Zhang Y, Chen Y, Zhu J, Davis RM, Madsen LA, Morris JR, Karolyi DR, LaConte SM, Sheng Z, Dorn HC. J Am Chem Soc, 2015, 137: 7881–7888

    Article  CAS  Google Scholar 

  4. Ross RB, Cardona CM, Guldi DM, Sankaranarayanan SG, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Van Keuren E, Holloway BC, Drees M. Nat Mater, 2009, 8: 208–212

    Article  CAS  Google Scholar 

  5. Zhang J, Stevenson S, Dorn HC. Acc Chem Res, 2013, 46: 1548–1557

    Article  CAS  Google Scholar 

  6. Rincón-García L, Ismael AK, Evangeli C, Grace I, Rubio-Bollinger G, Porfyrakis K, Agraït N, Lambert CJ. Nat Mater, 2016, 15: 289–293

    Article  Google Scholar 

  7. Toth K, Molloy JK, Matta M, Heinrich B, Guillon D, Bergamini G, Zerbetto F, Donnio B, Ceroni P, Felder-Flesch D. Angew Chem Int Ed, 2013, 52: 12303–12307

    Article  CAS  Google Scholar 

  8. Zalibera M, Krylov DS, Karagiannis D, Will PA, Ziegs F, Schiemenz S, Lubitz W, Reineke S, Savitsky A, Popov AA. Angew Chem Int Ed, 2018, 57: 277–281

    Article  CAS  Google Scholar 

  9. Han Z, Wu XH, Roelle S, Chen CH, Schiemann WP, Lu ZR. Nat Commun, 2017, 8: 692

    Article  Google Scholar 

  10. Popov AA, Yang S, Dunsch L. Chem Rev, 2013, 113: 5989–6113

    Article  CAS  Google Scholar 

  11. Dunsch L, Krause M, Noack J, Georgi P. J Phys Chem Solids, 2004, 65: 309–315

    Article  CAS  Google Scholar 

  12. Stevenson S, Mackey MA, Thompson MC, Coumbe HL, Madasu PK, Coumbe CE, Phillips JP. Chem Commun, 2007, 4263

  13. Yang S, Zhang L, Zhang W, Dunsch L. Chem Eur J, 2010, 16: 12398–12405

    Article  CAS  Google Scholar 

  14. Jiao M, Zhang W, Xu Y, Wei T, Chen C, Liu F, Yang S. Chem Eur J, 2012, 18: 2666–2673

    Article  CAS  Google Scholar 

  15. Liu F, Guan J, Wei T, Wang S, Jiao M, Yang S. Inorg Chem, 2013, 52: 3814–3822

    Article  CAS  Google Scholar 

  16. Fix R, Gordon RG, Hoffman DM. Chem Mater, 1991, 3: 1138–1148

    Article  CAS  Google Scholar 

  17. Lind H, Pilemalm R, Rogstrom L, Tasnadi F, Ghafoor N, Forsen R, Johnson LJS, Johansson-Joesaar MP, Oden M, Abrikosov IA. AIP Adv, 2014, 4: 127147

    Article  Google Scholar 

  18. Stevenson S, Thompson MC, Coumbe HL, Mackey MA, Coumbe CE, Phillips JP. J Am Chem Soc, 2007, 129: 16257–16262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51832008, 51672281, 51972309), and the Youth Innovation Promotion Association of CAS (2015025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunru Wang or Taishan Wang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhang, J., Zhao, C. et al. Zirconium nitride as a highly efficient nitrogen source to synthesize the metal nitride clusterfullerenes. Sci. China Chem. 64, 29–33 (2021). https://doi.org/10.1007/s11426-020-9843-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9843-2

Keywords

Navigation