Skip to main content
Log in

Folic Acid/Peptides Modified PLGA–PEI–PEG Polymeric Vectors as Efficient Gene Delivery Vehicles: Synthesis, Characterization and Their Biological Performance

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Polymeric vectors are safer alternatives for gene delivery owing to their advantages as compared to viral vectors. To improve the stability and transfection efficiency of poly(lactic-co-glycolic acid) (PLGA)- and poly(ethylenimine) (PEI)-based vectors, poly(ethylene glycol) (PEG), folic acid (FA), arginylglycylaspartic acid (RGD) peptides and isoleucine-lysine-valine-alanine-valine (IKVAV) peptides were employed and PLGA–PEI–PEG–FA and PLGA–PEI–PEG–RGD copolymers were synthesized. PLGA–PEI–PEG–FA/DNA, PLGA–PEI–PEG–RGD/DNA and PLGA–PEI–PEG–RGD/IKVAV/DNA nanocomplexes (NCs) were formed through bulk mixing. The structure and properties, including morphology, particle size, surface charge and DNA encapsulation, of NCs were studied. Robust NCs with spherical shape, uniform size distribution and slightly positive charge were able to completely bind DNA above their respective N/P ratios. The critical N/P ratio for PLGA–PEI–PEG–FA/DNA, PLGA–PEI–PEG–RGD/DNA and PLGA–PEI–PEG–RGD/IKVAV/DNA NCs was identified to be 12:1, 8:1 and 10:1, respectively. The covalent modification of PEI through a combination of biodegradable PLGA, hydrophilic PEG and targeting motifs significantly decreased the cytotoxicity of PEI. The developed NCs showed both N/P ratio and cell type-dependent transfection efficiency. An increase in N/P ratio resulted in increased transfection efficiency, and much improved transfection efficiency of NCs was observed above their respective critical N/P ratios. This study provides a promising means to produce polymeric vectors for gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mastrobattista, E., & Hennink, W. E. (2012). Polymers for gene delivery charged for success. Nature Materials, 11(1), 10–12.

    CAS  Google Scholar 

  2. Putnam, D. (2006). Polymers for gene delivery across length scales. Nature Materials, 5(6), 439–451.

    CAS  PubMed  Google Scholar 

  3. Zhang, Y., Satterlee, A., & Huang, L. (2012). In vivo gene delivery by nonviral vectors: Overcoming hurdles? Molecular Therapy, 20(7), 1298–1304.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Martens, T. F., Remaut, K., Demeester, J., De Smedt, S. C., & Braeckmans, K. (2014). Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today, 9(3), 344–364.

    CAS  Google Scholar 

  5. Kim, J. H., Park, J. S., et al. (2011). The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials, 32(1), 268–278.

    CAS  PubMed  Google Scholar 

  6. Dai, J. A., Zou, S. Y., Pei, Y. Y., Cheng, D., Ai, H., & Shuai, X. T. (2011). Polyethylenimine-grafted copolymer of poly(L-lysine) and poly(ethylene glycol) for gene delivery. Biomaterials, 32(6), 1694–1705.

    CAS  PubMed  Google Scholar 

  7. Lai, W.-F. (2014). Cyclodextrins in non-viral gene delivery. Biomaterials, 35(1), 401–411.

    CAS  PubMed  Google Scholar 

  8. More, H. T., Frezzo, J. A., Dai, J., Yamano, S., & Montclare, J. K. (2014). Gene delivery from supercharged coiled-coil protein and cationic lipid hybrid complex. Biomaterials, 35(25), 7188–7193.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanaka, H., Akita, H., Ishiba, R., et al. (2014). Neutral biodegradable lipid-envelope-type nanoparticle using vitamin A-Scaffold for nuclear targeting of plasmid DNA. Biomaterials, 35(5), 1755–1761.

    CAS  PubMed  Google Scholar 

  10. Unzueta, U., Saccardo, P., Domingo-Espin, J., et al. (2014). Sheltering DNA in self-organizing, protein-only nano-shells as artificial viruses for gene delivery. Nanomedicine-Nanotechnology Biology and Medicine, 10(3), 535–541.

    CAS  Google Scholar 

  11. Morris, V. B., & Labhasetwar, V. (2015). Arginine-rich polyplexes for gene delivery to neuronal cells. Biomaterials, 60, 151–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yue, J. H., Wu, J., Liu, D., Zhao, X. L., & Lu, W. W. (2015). BMP2 gene delivery to bone mesenchymal stem cell by chitosan-g-PEI nonviral vector. Nanoscale Research Letters, 10, 203.

    PubMed  PubMed Central  Google Scholar 

  13. Wong, S. Y., Pelet, J. M., & Putnam, D. (2007). Polymer systems for gene delivery-Past, present, and future. Progress in Polymer Science (Oxford), 32(8–9), 799–837.

    CAS  Google Scholar 

  14. Wu, G. C., Zhou, F., Ge, L. F., Liu, X. M., & Kong, F. S. (2012). Novel mannan-PEG-PE modified bioadhesive PLGA nanoparticles for targeted gene delivery. Journal of Nanomaterials. https://doi.org/10.1155/2012/981670

    Article  Google Scholar 

  15. Shi, S., Shi, K., Tan, L., et al. (2014). The use of cationic MPEG-PCL-g-PEI micelles for co-delivery ofMsurvivin T34A gene and doxorubicin. Biomaterials, 35(15), 4536–4547.

    CAS  PubMed  Google Scholar 

  16. Tagalakis, A. D., Kenny, G. D., et al. (2014). PEGylation improves the receptor-mediated transfection efficiency of peptide-targeted, self-assembling, anionic nanocomplexes. Journal of Controlled Release, 174, 177–187.

    CAS  PubMed  Google Scholar 

  17. Yu, J., Deng, H., Xie, F., Chen, W., Zhu, B., & Xu, Q. (2014). The potential of pH-responsive PEG-hyperbranched polyacylhydrazone micelles for cancer therapy. Biomaterials, 35(9), 3132–3144.

    CAS  PubMed  Google Scholar 

  18. Jiang, Q. Y., Lai, L. H., et al. (2011). Gene delivery to tumor cells by cationic polymeric nanovectors coupled to folic acid and the cell-penetrating peptide octaarginine. Biomaterials, 32(29), 7253–7262.

    CAS  PubMed  Google Scholar 

  19. Liang, B., He, M. L., Xiao, Z. P., et al. (2008). Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochemical and Biophysical Research Communications, 367(4), 874–880.

    CAS  PubMed  Google Scholar 

  20. Liang, B., He, M. L., et al. (2009). The use of folate-PEG-grafted-hybranched-PEI nonviral vector for the inhibition of glioma growth in the rat. Biomaterials, 30(23–24), 4014–4020.

    CAS  PubMed  Google Scholar 

  21. Kim, H. A., Nam, K., & Kim, S. W. (2014). Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery. Biomaterials, 35(26), 7543–7552.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Majzoub, R. N., Chan, C.-L., et al. (2014). Uptake and transfection efficiency of PEGylated cationic liposome-DNA complexes with and without RGD-tagging. Biomaterials, 35(18), 4996–5005.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428(6982), 487–492.

    CAS  PubMed  Google Scholar 

  24. Bordelon, H., Biris, A. S., Sabliov, C. M., & Monroe, W. T. (2011). Characterization of plasmid DNA location within chitosan/PLGA/pDNA nanoparticle complexes designed for gene delivery. Journal of Nanomaterials. https://doi.org/10.1155/2011/952060

    Article  Google Scholar 

  25. Mishra, D., Kang, H. C., & Bae, Y. H. (2011). Reconstitutable charged polymeric (PLGA) (2)-b-PEI micelles for gene therapeutics delivery. Biomaterials, 32(15), 3845–3854.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeng, P., Xu, Y., Zeng, C. H., Ren, H., & Peng, M. L. (2011). Chitosan-modified poly(D, L-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing. International Journal of Pharmaceutics, 415(1–2), 259–266.

    CAS  PubMed  Google Scholar 

  27. Kong, F. S., Ge L. F., Liu X. M., Huang N., & Zhou F. (2012). Mannan-modified PLGA Nanoparticles for targeted gene delivery. International Journal of Photoenergy.

  28. Tang, J., Chen, J. Y., et al. (2012). Calcium phosphate embedded PLGA nanoparticles: A promising gene delivery vector with high gene loading and transfection efficiency. International Journal of Pharmaceutics, 431(1–2), 210–221.

    CAS  PubMed  Google Scholar 

  29. Liu, P., Sun, Y., Wang, Q., Sun, Y., Li, H., & Duan, Y. (2014). Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas. Biomaterials, 35(2), 760–770.

    CAS  PubMed  Google Scholar 

  30. Lv, H., Zhang, S., Wang, B., Cui, S., & Yan, J. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release, 114(1), 100–109.

    CAS  PubMed  Google Scholar 

  31. Ahn, H. H., Lee, J. H., et al. (2008). Polyethyleneimine-mediated gene delivery into human adipose derived stem cells. Biomaterials, 29(15), 2415–2422.

    CAS  PubMed  Google Scholar 

  32. Hobel, S., Prinz, R., et al. (2008). Polyethylenimine PEI F25-LMW allows the long-term storage of frozen complexes as fully active reagents in siRNA-mediated gene targeting and DNA delivery. European Journal of Pharmaceutics and Biopharmaceutics, 70(1), 29–41.

    PubMed  Google Scholar 

  33. Behr, J. P. (1997). The proton sponge: A trick to enter cells the viruses did not exploit. Chimia, 51(1–2), 34–36.

    CAS  Google Scholar 

  34. Dong, X., Tian, H. Y., Chen, L., Chen, J., & Chen, X. S. (2011). Biodegradable mPEG-b-P(MCC-g-OEI) copolymers for efficient gene delivery. Journal of Controlled Release, 152(1), 135–142.

    CAS  PubMed  Google Scholar 

  35. Endres, T. K., Beck-Broichsitter, M., Samsonova, O., Renette, T., & Kissel, T. H. (2011). Self-assembled biodegradable amphiphilic PEG-PCL-lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials, 32(30), 7721–7731.

    CAS  PubMed  Google Scholar 

  36. Hatakeyama, H., Akita, H., & Harashima, H. (2011). A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Advanced Drug Delivery Reviews, 63(3), 152–160.

    CAS  PubMed  Google Scholar 

  37. Li, Y., Kroger, M., & Liu, W. K. (2014). Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials, 35(30), 8467–8478.

    CAS  PubMed  Google Scholar 

  38. Hosseinkhani, H., Hiraoka, Y., et al. (2013). Engineering three-dimensional collagen-IKVAV matrix to mimic neural microenvironment. ACS Chemical Neuroscience, 4(8), 1229–1235.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pallarola, D., Bochen, A., et al. (2014). Interface immobilization chemistry of cRGD-based peptides regulates integrin mediated cell adhesion. Advanced Functional Materials, 24(7), 943–956.

    CAS  PubMed  Google Scholar 

  40. Zhao, F., Yin, H., & Li, J. (2014). Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Biomaterials, 35(3), 1050–1062.

    CAS  PubMed  Google Scholar 

  41. Li, B., Qiu, T., Zhang, P., Wang, X., Yin, Y., & Li, S. (2014). IKVAV regulates ERK1/2 and Akt signalling pathways in BMMSC population growth and proliferation. Cell Proliferation, 47(2), 133–145.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Singh, S. R., Grossniklaus, H. E., et al. (2009). Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Therapy, 16(5), 645–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wibowo, A. S., Singh, M., et al. (2013). Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15180–15188.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Berns, E. J., Sur, S., et al. (2014). Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials, 35(1), 185–195.

    CAS  PubMed  Google Scholar 

  45. Liu, C. (2016). Novel fibrous scaffolds with dual growth factor delivery and non-viral gene delivery for neural tissue engineering. (Thesis). University of Hong Kong.

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grants Council through a GRF grant (Grant No: HKU 718109E); the Guangdong Special Support Plan for High Level Talents of China (Grant No: 2015TQ01R546) and the Hubei Natural Science Foundation of China (Grant No: 2018CFC874).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongxian Li or Fengjun Cao.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Xie, Y., Li, X. et al. Folic Acid/Peptides Modified PLGA–PEI–PEG Polymeric Vectors as Efficient Gene Delivery Vehicles: Synthesis, Characterization and Their Biological Performance. Mol Biotechnol 63, 63–79 (2021). https://doi.org/10.1007/s12033-020-00285-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00285-5

Keywords

Navigation