Skip to main content
Log in

Quantized-Energy Equation for N-Level Atom in the Probability Representation of Quantum Mechanics

  • Published:
Journal of Russian Laser Research Aims and scope

A Correction to this article was published on 05 January 2021

This article has been updated

Abstract

For Hermitian and non-Hermitian Hamiltonian matrices H, we present the Schr¨odinger equation for qudit (spin-j system, N-level atom) with the state vector |ψ〉 in a new form of the linear eigenvalue equation for the matrix = (H ⊗ 1N) and the probability eigenvector |p〉 identified with quantum states in the probability representation of quantum mechanics. We discuss the possibility to experimentally detect the difference between the system states described by the solutions, corresponding to the Schrödinger equation with Hermitian and non-Hermitian Hamiltonians, by measuring the probabilities of artificial spin-1/2 projections m = ± 1/2, sets of which are identified with qudit states. We show that different symmetries of systems, including 𝒫𝒯 -symmetry and broken 𝒫𝒯 -symmetry, are determined by a set of N complex eigenvalues of the Hamiltonian matrix H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 05 January 2021

    In section Acknowledgments, the Russian Science Foundation Grant No. 1871-10091 should read No. 1971-10091.

References

  1. E. Schrödinger, Ann. Phys., 384, 361 (1926).

    Article  Google Scholar 

  2. E. Schrödinger, Ann. Phys., 384, 489 (1926).

    Article  Google Scholar 

  3. P. A. M. Dirac, The Principles of Quantum Mechanics, Clarendon Press, Oxford, UK (1981).

    Google Scholar 

  4. C. M. Bender and S. Boettcher, Phys. Rev. Lett., 80, 5243 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. C. M. Bender, Rev. Prog. Phys., 70, 917 (2007).

  6. A. Mostafazadeh, J. Math. Phys., 43, 2814 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Mostafazadeh, Phys. Lett. B, 650, 208 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Mostafazadeh, Int. J. Geom. Meth. Mod. Phys., 7, 1191 (2010).

    Article  Google Scholar 

  9. Chia-Yi Ju, A. Miranowicz, Guang-Yin Chen, and F. Nori, Phys. Rev. A, 100, 062118 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  10. Yang Wu, Wenquan Liu, Jianpei Geng, et al., Science, 364(6443), 878 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  11. Wei-Chao Gao, Chao Zheng, Lu Liu, et al., “Experimental simulation of the parity-time-symmetric dynamics using photonics qubits,” Los Alamos ArXiv:2004.08985v1 [quant-ph] (2020).

    Google Scholar 

  12. J. Cen and A. Saxena, “Anti-PT-symmetric qubit: Decoherence and entanglement entropy,” Los Alamos ArXiv:2008.04514v1 (2020).

    Google Scholar 

  13. S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A, 213, 1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. I. Dodonov and V. I. Man’ko, Phys. Lett. A, 229, 335 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. I. Man’ko and O. V. Man’ko, J. Exp. Theor. Phys. 85, 430 (1997).

    Article  ADS  Google Scholar 

  16. M. O. Terra-Cunha, V. I. Man’ko, and M. O. Scully, Found. Phys. Lett., 14, 103 (2001).

    Article  MathSciNet  Google Scholar 

  17. M. Asorey, A. Ibort, G. Marmo, and F. Ventriglia, Phys. Scr., 90, 074031 (2015).

    Article  ADS  Google Scholar 

  18. M. A. Man’ko and V. I. Man’ko, Entropy, 20(9), 692 (2018).

    Article  ADS  Google Scholar 

  19. J. A. Lopez-Saldivar, O. Castanos, E. Nahmad-Achar, et al., Entropy, 20(9), 630 (2018).

    Article  ADS  Google Scholar 

  20. I. Y. Doskoch and M. A. Man’ko, Quantum Rep., 1(2), 130 (2019).

    Article  Google Scholar 

  21. P. Adam, V. A. Andreev, M. A. Man’ko, et al., Symmetry, 12, 1099 (2020).

    Article  Google Scholar 

  22. V. N. Chernega, M. A. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 41, 441 (2020).

    Article  Google Scholar 

  23. V. I. Man’ko, G. Marmo, F. Ventriglia, and P. Vitale, J. Phys. A: Math. Theor., 50, 335302 (2017).

    Article  Google Scholar 

  24. V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 38, 141 (2017).

    Article  Google Scholar 

  25. V. N. Chernega, M. A. Man’ko, and V. I. Man’ko, Symmetry, PT-Symmetry in Physical Systems (2020, in press),

  26. R. Grimaudo, A. Messina, A. Sergi, et al., “Two-qubit entanglement generation through non-Hermitian Hamiltonians induced by repeated measurements on an ancilla,” Los Alsmos ArXiv:2009.10004v1 [quant-ph] (2020).

    Google Scholar 

  27. M. A. Man’ko and V. I. Man’ko, Entropy, 17, 2876 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. A. Man’ko and V. I. Man’ko, Phys. Scr., 93, 084002 (2018).

    Article  ADS  Google Scholar 

  29. J. A. Lopez-Saldivar, O. Castaños, M. A. Man’ko, and V. I. Man’ko, Quantum Inform. Process., 18, 210 (2019).

    Article  ADS  Google Scholar 

  30. J. A. Lopez-Saldivar, O. Castanos, M. A. Man’ko, and V. I. Man’ko, Entropy, 21, 736 (2019).

    Article  ADS  Google Scholar 

  31. V. N. Chernega and V. I. Man’ko, J. Russ. Laser Res., 40, 496 (2019).

    Article  Google Scholar 

  32. J. A. Lopez-Saldivar, M. A. Man’ko, and V. I. Man’ko, Entropy, 22, 586 (2020).

    Article  ADS  Google Scholar 

  33. R. Grimaudo, V. I. Man’ko, M. A. Man’ko, and A. Messina. Phys. Scr., 95, 024004 (2020).

    Article  ADS  Google Scholar 

  34. M. A. Man’ko and V. I. Man’ko. Int. J. Quantum Inform., 18, 1941021 (2020).

    Article  ADS  Google Scholar 

  35. V. A. Andreev, M. A. Man’ko, and V. I. Man’ko, Phys. Lett. A, 384, 126349 (2020).

    Article  MathSciNet  Google Scholar 

  36. V. I. Man’ko, O. V. Man’ko, and V. N. Chernega, Phys. Part. Nuclei, 51, 772 (2020).

    Article  ADS  Google Scholar 

  37. J. A. López-Saldívar, Phys. Scr., 95, 065206 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Chernega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernega, V.N., Man’ko, M.A. & Man’ko, V.I. Quantized-Energy Equation for N-Level Atom in the Probability Representation of Quantum Mechanics. J Russ Laser Res 41, 576–583 (2020). https://doi.org/10.1007/s10946-020-09912-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09912-7

Keywords

Navigation