Skip to main content
Log in

Polymer-Free Injectable In Situ Forming Nanovesicles as a New Platform for Controlled Parenteral Drug Delivery Systems

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

In this study, the preparation of self-assembled polymer-free in situ forming nanovesicles (ISNs) based on non-ionic surfactants (NISs) is presented.

Methods

A 22·41 full factorial experimental design was adopted for the development of novel polymer-free ISNs loaded with tenoxicam utilizing the emulsion method. The type of NIS (Brij® 52 or Span® 60), the cholesterol percentage (30, 50, or 60 w/w%), and the internal phase percentage (20 or 30 v/v%) were chosen as the independent variables. Percentage drug released after 1 h (Q1), vesicle particle size (PS), and mean dissolution time (MDT) were the dependent variables. Selected formulation was investigated morphologically using transmission electron microscopy.

Results

Results revealed that the formation had spherical dense shape. All independent factors significantly affected the percentage drug release after the first hour (Q1), and the MDT, while only the type of NIS had a significant effect on PS. The highest control of drug release was observed in formulation containing Span® 60 with lower internal phase percentage (MDT = 20.06 ± 0.40 h) as well as the smallest PS (123.75 ± 16.68 nm).

Conclusion

The obtained results indicated the potentiality of the invented ISNs in controlling the release of tenoxicam in a desirable economical biphasic pattern compared to other in situ formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cleland JL, Daugherty A, Mrsny R. Emerging protein delivery methods. Curr Opin Biotechnol. 2001;12(2):212–9.

    Article  CAS  Google Scholar 

  2. Dong WY, Körber M, López Esguerra V, Bodmeier R. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J Control Release. 2006;115(2):158–67.

    Article  CAS  Google Scholar 

  3. Tamilvanan S. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog Lipid Res. 2004;43(6):489–533.

    Article  CAS  Google Scholar 

  4. Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997;154(2):123–40.

    Article  CAS  Google Scholar 

  5. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56(9):1273–89.

    Article  CAS  Google Scholar 

  6. Thatte S, Datar K, Ottenbrite RM. Perspectives on: polymeric drugs and drug delivery systems. J Bioact Compat Polym. 2005;20(6):585–601.

    Article  CAS  Google Scholar 

  7. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282(1–2):1–18.

    Article  CAS  Google Scholar 

  8. Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 2006;23(7):1417–50.

    Article  CAS  Google Scholar 

  9. Mao S, Guo C, Shi Y, Li LC. Recent advances in polymeric microspheres for parenteral drug delivery--part 1. Expert Opin Drug Deliv. 2012;9(9):1161–76.

    Article  CAS  Google Scholar 

  10. Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Release. 2002;80(1–3):9–28.

    Article  CAS  Google Scholar 

  11. Kanwar N, Sinha VR. In situ forming depot as sustained-release drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2019;36(2):93–136.

    Article  Google Scholar 

  12. Packhaeuser C, et al. In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm. 2004;58(2):445–55.

    Article  CAS  Google Scholar 

  13. Ammar HO, Haider M, Ibrahim M, el Hoffy NM. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv. 2017;24(1):414–21.

    Article  CAS  Google Scholar 

  14. Kranz H, Bodmeier R. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles. Eur J Pharm Sci. 2008;34(2):164–72.

    Article  CAS  Google Scholar 

  15. Kranz H, Yilmaz E, Brazeau GA, Bodmeier R. In vitro and in vivo drug release from a novel in situ forming drug delivery system. Pharm Res. 2008;25(6):1347–54.

    Article  CAS  Google Scholar 

  16. Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005;290(1):155–9.

    Article  CAS  Google Scholar 

  17. Podczeck F. Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). Int J Pharm. 1993;97(1–3):93–100.

    Article  CAS  Google Scholar 

  18. Pitt CG. The controlled parenteral delivery of polypeptides and proteins. Int J Pharm. 1990;59(3):173–96.

    Article  CAS  Google Scholar 

  19. Ruiz JM, Benoit JP. In vivo peptide release from poly(dl-lactic acid-co-glycolic acid) copolymer 5050 microspheres. J Control Release. 1991;16(1):177–85.

    Article  CAS  Google Scholar 

  20. Ijeoma FU, Suresh PV. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1–2):33–70.

    Google Scholar 

  21. Blanco M, Alonso M. Development and characterization of protein-loaded poly (lactide-co-glycolide) nanospheres. Eur J Pharm Biopharm. 1997;43(3):287–94.

    Article  CAS  Google Scholar 

  22. Gaspar MM, et al. Formulation of L-asparaginase-loaded poly (lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J Control Release. 1998;52(1):53–62.

    Article  Google Scholar 

  23. Graham P, Brodbeck K, McHugh A. Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release. 1999;58(2):233–45.

    Article  CAS  Google Scholar 

  24. Mehta RC, Jeyanthi R, Calls S, Thanoo BC, Burton KW, DeLuca PP. Biodegradable microspheres as depot system for patenteral delivery of peptide drugs. J Control Release. 1994;29(3):375–84.

    Article  CAS  Google Scholar 

  25. Essa E. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J Pharm. 2010;4(4):227–33.

    Article  CAS  Google Scholar 

  26. Hao Y, Zhao F, Li N, Yang Y, Li K'. Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm. 2002;244(1):73–80.

    Article  CAS  Google Scholar 

  27. Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, et al. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B: Biointerfaces. 2003;30(1):129–38.

    Article  CAS  Google Scholar 

  28. Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377(1):1–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehab N. Shamma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, H.O., Ibrahim, M., Mahmoud, A.A. et al. Polymer-Free Injectable In Situ Forming Nanovesicles as a New Platform for Controlled Parenteral Drug Delivery Systems. J Pharm Innov 17, 391–398 (2022). https://doi.org/10.1007/s12247-020-09510-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09510-9

Keywords

Navigation