Skip to main content
Log in

A General Method for Computer-Assisted Proofs of Periodic Solutions in Delay Differential Problems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we develop a general computer-assisted proof method for periodic solutions to delay differential equations. The class of problems considered includes systems of delay differential equations with an arbitrary number of (forward and backward) delays. When the nonlinearities include nonpolynomial terms we introduce auxiliary variables to first rewrite the problem into an equivalent polynomial one. We then apply a flexible fixed point technique in a space of geometrically decaying Fourier coefficients. We showcase the efficacy of this method by proving periodic solutions in the well-known Mackey–Glass delay differential equation for the classical parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arioli, G., Koch, H.: Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto–Sivashinski equation. Arch. Ration. Mech. Anal. 197(3), 1033–1051 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Arioli, G., Koch, H.: Integration of dissipative partial differential equations: a case study. SIAM J. Appl. Dyn. Syst. 9(3), 1119–1133 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Bánhelyi, B., Csendes, T., Krisztin, T., Neumaier, A.: Global attractivity of the zero solution for Wright’s equation. SIAM J. Appl. Dyn. Syst. 13(1), 537–563 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Breden, M., Kuehn, C.: Rigorous validation of stochastic transition paths. J. Math. Pures Appl. 131(9), 88–129 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Breuer, B., McKenna, P.J., Plum, M.: Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differ. Equ. 195(1), 243–269 (2003)

    MathSciNet  MATH  Google Scholar 

  7. CAPD: Computer assisted proofs in dynamics, a package for rigorous numerics. http://capd.ii.uj.edu.pl

  8. Castelli, R., Gameiro, M., Lessard, J.-P.: Rigorous numerics for ill-posed PDEs: periodic orbits in the Boussinesq equation. Arch. Ration. Mech. Anal. 228(1), 129–157 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Cooke, K., van den Driessche, P., Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Cyranka, J.: Efficient and generic algorithm for rigorous integration forward in time of dPDEs: part I. J. Sci. Comput. 59(1), 28–52 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Diekmann, O., van Gils, SA., Lunel, SMV., Walther, HO.: Delay Equations, Volume 110 of Applied Mathematical Sciences. Springer-Verlag, New York, Functional, Complex, and Nonlinear Analysis, (1995)

  13. Figueras, J.-L., Gameiro, M., Lessard, J.-P., de la Llave, R.: A framework for the numerical computation and a posteriori verification of invariant objects of evolution equations. SIAM J. Appl. Dyn. Syst. 16(2), 1070–1088 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Groothedde, C.M., James, J.D.M.: Parameterization method for unstable manifolds of delay differential equations. J. Comput. Dyn. 4(1), 21 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Hale, J.K., Lunel, S.M.V.: Introduction to Functional-Differential Equations Volume 99 of Applied Mathematical Sciences. Springer-Verlag, New York (1993)

    Google Scholar 

  16. He, X., de la Llave, R.: Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method ii: Analytic case. J. Differ. Equ. 261(3), 2068–2108 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Hungria, A., Lessard, J.-P., Mireles-James, J.D.: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comput. 85, 1427–1459 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Ikeda, K., Matsumoto, K.: High-dimensional chaotic behavior in systems with time-delayed feedback. Phys. D 29(1–2), 223–235 (1987)

    MATH  Google Scholar 

  19. Jaquette, J.: A proof of Jones’ conjecture. J. Differ. Equ. 266(6), 3818–3859 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Jaquette, J., Lessard, J.-P., Mischaikow, K.: Stability and uniqueness of slowly oscillating periodic solutions to Wright’s equation. J. Differ. Equ. 263(11), 7263–7286 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Jorba, À., Zou, M.: A software package for the numerical integration of ODEs by means of high-order Taylor methods. Exp. Math. 14(1), 99–117 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Kakutani, S., Markus, L.: On the non-linear difference-differential equation \(y^{\prime } (t)=[A-By(t-\tau )]y(t)\). In Contributions to the theory of nonlinear oscillations, vol. IV, Annals of Mathematics Studies, No. 41, pp. 1–18. Princeton University Press, Princeton, N.J., (1958)

  23. Kaplan, J.L., Yorke, J.A.: On the stability of a periodic solution of a differential delay equation. SIAM J. Math. Anal. 6, 268–282 (1975)

    MathSciNet  MATH  Google Scholar 

  24. Kaplan, J.L., Yorke, J.A.: On the nonlinear differential delay equation \(x^{\prime }(t)=-f(x(t),\)\(x(t-1))\). J. Differ. Equ. 23(2), 293–314 (1977)

    MATH  Google Scholar 

  25. Kiss, G., Lessard, J.-P.: Computational fixed-point theory for differential delay equations with multiple time lags. J. Differ. Equ. 252(4), 3093–3115 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Knuth, DE.: The Art of Computer Programming. vol. 2, Addison-Wesley Publishing Co., Reading, Mass., 2nd edn., Seminumerical Algorithms, Addison-Wesley Series in Computer Science and Information Processing (1981)

  27. Lanford, O.E.: A computer-assisted proof of the Feigenbaum conjectures. Bull. Am. Math. Soc. 6, 427–434 (1982)

    MathSciNet  MATH  Google Scholar 

  28. Lessard, J.-P.: Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright’s equation. J. Differ. Equ. 248(5), 992–1016 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Lessard, J.-P., Mireles James, J.D.: Computer assisted Fourier analysis in sequence spaces of varying regularity. SIAM J. Math. Anal. 49(1), 530–561 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Lessard, J.-P., Mireles James, J.D., Ransford, J.: Automatic differentiation for Fourier series and the radii polynomial approach. Phys. D 334, 174–186 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Mackey, M.C., Glass, L.: Mackey–Glass equation. www.scholarpedia.org/article/Mackey-?Glass_equation

  32. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)

    MATH  Google Scholar 

  33. Mallet-Paret, J., Nussbaum, R.D.: Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation. Ann. Math. Pura Appl. 4(145), 33–128 (1986)

    MathSciNet  MATH  Google Scholar 

  34. Mallet-Paret, J., Sell, G.R.: The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay. J. Differ. Equ. 125(2), 441–489 (1996)

    MATH  Google Scholar 

  35. Matsue, K.: Rigorous numerics for stationary solutions of dissipative PDEs—existence and local dyanmics. Nonlinear Theory Its Appl. IEICE 4(1), 62–79 (2013)

    Google Scholar 

  36. Mischaikow, K., Mireles-James, J.D.: Computational proofs in dynamics. In: Björn, E. (ed.) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2015)

    Google Scholar 

  37. Mischaikow, K., Mrozek, M.: Chaos in the Lorenz equations: a computer assisted proof. Bull. Am. Math. Soc. 32(1), 66–72 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Moore, R.E.: Interval Analysis. Prentice-Hall Inc, Englewood Cliffs (1966)

    MATH  Google Scholar 

  39. Nakao, M.T.: Numerical verification methods for solutions of ordinary and partial differential equations. Numer. Funct. Anal. Optim. 22(3–4), 321–356 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Nussbaum, R.D.: Periodic solutions of analytic functional differential equations are analytic. Michigan Math. J. 20, 249–255 (1973)

    MathSciNet  MATH  Google Scholar 

  41. Nussbaum, R.D.: The range of periods of periodic solutions of \(x^{\prime }(t)=-\alpha f(x(t-1))\). J. Math. Anal. Appl. 58(2), 280–292 (1977)

    MathSciNet  MATH  Google Scholar 

  42. Nussbaum, R.D.: Wright’s equation has no solutions of period four. Proc. R. Soc. Edinburgh Sect. A 113(3–4), 281–288 (1989)

    MathSciNet  MATH  Google Scholar 

  43. Rump, S.: Verification methods: Rigorous results using floating point arithmetic. In: Acta Numerica, pp. 287–449, (2010)

  44. Rump, S.M.: INTLAB-INTerval LABoratory. In: Tibor C (ed), Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht, (1999). http://www.ti3.tuhh.de/rump/

  45. Sprott, J.C.: A simple chaotic delay differential equation. Phys. Lett. A 366(4–5), 397–402 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Szczelina, R.: A computer assisted proof of multiple periodic orbits in some first order non-linear delay differential equation. Electron. J. Qual. Theory Differ. Equ. 2016(83), 19 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Szczelina, R.: Zgliczyński, Piotr: algorithm for rigorous integration of delay differential equations and the computer-assisted Proof of Periodic Orbits in the Mackey-Glass Equation. Found. Comput. Math. (2017). https://doi.org/10.1007/s10208-017-9369-5

    Article  Google Scholar 

  48. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris 328(12), 1197–1202 (1999)

    MathSciNet  MATH  Google Scholar 

  49. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2(1), 53–117 (2002)

    MathSciNet  MATH  Google Scholar 

  50. Tucker, W.: Validated Numerics. Princeton University Press, Princeton (2011). A Short Introduction to Rigorous Computations

    MATH  Google Scholar 

  51. van den Berg, J.B., Jaquette, J.: A proof of Wright’s conjecture. J. Differ. Equ. 264(12), 7412–7462 (2018)

    MathSciNet  MATH  Google Scholar 

  52. van den Berg, J.B.: Jean-Philippe L (2015) Rigorous numerics in dynamics. Not. Am. Math. Soc. 62(9), 1057–1061 (2015)

    Google Scholar 

  53. van den Berg, J.B., Williams, J.F.: Validation of the bifurcation diagram in the 2D Ohta–Kawasaki problem. Nonlinearity 30(4), 1584–1638 (2017)

    MathSciNet  MATH  Google Scholar 

  54. van den Berg, J.B., Groothedde, C., Lessard, J.-P.: MATLAB code for A general method for computer-assisted proofs of periodic solutions in delay differential problems. (2018). http://www.math.vu.nl/~janbouwe/code/mackeyglass/

  55. Walther, H.-O.: Topics in delay differential equations. Jahresber. Dtsch. Math. Ver. 116(2), 87–114 (2014)

    MathSciNet  MATH  Google Scholar 

  56. Wilczak, D., Zgliczyński, P.: Symbolic dynamics for kuramoto-sivashinsky pde on the line— a computer-assisted proof, 2017. Preprint, arXiv:1710.00329

  57. Zgliczyński, P.: Rigorous numerics for dissipative partial differential equations. II. Periodic orbit for the Kuramoto–Sivashinsky PDE—a computer-assisted proof. Found. Comput. Math. 4(2), 157–185 (2004)

    MathSciNet  MATH  Google Scholar 

  58. Zgliczyński, P.: Rigorous numerics for dissipative PDEs III. an effective algorithm for rigorous integration of dissipative PDEs. Topol. Methods Nonlinear Anal. 36(2), 197–262 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was provided by NWO-VICI (Grant No. 639033109) and Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Lessard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Berg, J.B., Groothedde, C. & Lessard, JP. A General Method for Computer-Assisted Proofs of Periodic Solutions in Delay Differential Problems. J Dyn Diff Equat 34, 853–896 (2022). https://doi.org/10.1007/s10884-020-09908-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09908-6

Keywords

Navigation