Skip to main content
Log in

Decay Results for a Viscoelastic Problem with Nonlinear Boundary Feedback and Logarithmic Source Term

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

The main goal of this work is to investigate the long-time behavior of a viscoelastic equation with a logarithmic source term and a nonlinear feedback localized on a part of the boundary. In the framework of potential well, we first show the global existence. Then, we discuss the asymptotic behavior of the problem with a very general assumption on the behavior of the relaxation function g, namely, \(g^{\prime }(t)\le -\xi (t) G(g(t))\). We establish explicit and general decay results from which we can recover the well-known exponential and polynomial rates when G(s) = sp and p covers the full admissible range [1,2). Our results are obtained without imposing any restrictive growth assumption on the boundary damping term. This work generalizes and improves many earlier results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christensen R. Theory of viscoelasticity: an introduction. Amsterdam: Elsevier; 2012.

    Google Scholar 

  2. Cavalcanti M, Cavalcanti VD, Prates Filho J, Soriano J, et al. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ Integral Equ 2001;14(1):85–116.

    MathSciNet  MATH  Google Scholar 

  3. Cavalcanti M, Cavalcanti VD, Martinez P. General decay rate estimates for viscoelastic dissipative systems. Nonlinear Anal Theory, Methods Appl 2008;68(1):177–93.

    Article  MathSciNet  Google Scholar 

  4. Al-Gharabli MM, Al-Mahdi AM, Messaoudi SA. General and optimal decay result for a viscoelastic problem with nonlinear boundary feedback. J Dyn Control Syst 2018;25:1–22.

    MathSciNet  MATH  Google Scholar 

  5. Lasiecka I, Tataru D, et al. Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ Integral Equ 1993;6(3): 507–33.

    MathSciNet  MATH  Google Scholar 

  6. Alabau-Boussouira F. Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl Math Optim 2005; 51(1):61–105.

    Article  MathSciNet  Google Scholar 

  7. Cavalcanti MM, Cavalcanti VND, Lasiecka I. Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction. J Differ Equ 2007;236(2):407–59.

    Article  MathSciNet  Google Scholar 

  8. Cavalcanti M, Guesmia A, et al. General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type. Differ Integral Equ 2005;18(5):583–600.

    MathSciNet  MATH  Google Scholar 

  9. Wu-ST. General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions. Zeitschrift fur angewandte Mathematik und Physik̈, 2012;63(1):65–106.

    Article  MathSciNet  Google Scholar 

  10. Wu-ST. General decay of solutions for a viscoelastic equation with Balakrishnan-Taylor damping and nonlinear boundary damping-source interactions. Acta Mathematica Scientia 2015;35(5):981–94.

    Article  MathSciNet  Google Scholar 

  11. Messaoudi SA, Mustafa MI. On convexity for energy decay rates of a viscoelastic equation with boundary feedback. Nonlinear Anal Theory, Methods Appl 2010;72(9-10):3602–11.

    Article  MathSciNet  Google Scholar 

  12. Messaoudi SA, Al-Khulaifi W, et al. General and optimal decay for a viscoelastic equation with boundary feedback. Topol Methods Nonl Anal 2018;51(2): 413–27.

    MathSciNet  MATH  Google Scholar 

  13. Wang X, Chen Y, Yang Y, Li J, Xu R. Kirchhoff-type system with linear weak damping and logarithmic nonlinearities. Nonlinear Anal 2019; 188:475–99.

    Article  MathSciNet  Google Scholar 

  14. Bartkowski K, Górka P. One-dimensional Klein–Gordon equation with logarithmic nonlinearities. J Phys A Math Theor 2008;41(35):355201.

    Article  MathSciNet  Google Scholar 

  15. Bialynicki-Birula I, Mycielski J. Wave equations with logarithmic nonlinearities. Bull Acad Polon Sci Cl 1975;3(23):461.

    MathSciNet  Google Scholar 

  16. Gorka P. Logarithmic Klein-Gordon equation. Acta Phys Polon 2009; 40:59–66.

    MathSciNet  MATH  Google Scholar 

  17. Barrow JD, Parsons P. Inflationary models with logarithmic potentials. Phys Rev D 1995;52(10):5576.

    Article  Google Scholar 

  18. Enqvist K, McDonald J. Q-Balls and baryogenesis in the MSSM. Phys Lett B 1998;425(3-4):309–21.

    Article  Google Scholar 

  19. Bialynicki-Birula I, Mycielski J. Nonlinear wave mechanics. Ann Phys 1976;100(1-2):62–93.

    Article  MathSciNet  Google Scholar 

  20. Górka P, Prado H, Reyes E. Nonlinear equations with infinitely many derivatives. Compl Anal Oper Theory 2011;5(1):313–23.

    Article  MathSciNet  Google Scholar 

  21. Vladimirov VS. The equation of the-adic open string for the scalar tachyon field. Izv Math 2005;69(3):487.

    Article  MathSciNet  Google Scholar 

  22. Al-Gharabli MM, Guesmia A, Messaoudi SA. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Commun Pure Appl Anal 2019;1:18.

    MathSciNet  MATH  Google Scholar 

  23. Al-Gharabli MM. New general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Bound Value Probl 2019;2019(1):1–21.

    Article  MathSciNet  Google Scholar 

  24. Cazenave T, Haraux A. Équations d’évolution avec non linéarité logarithmique. Annales de la faculté des sciences de Toulouse: Mathématiques vol. 2, no. 1, pp 21–51 Université, Paul Sabatier; 1980.

  25. Hiramatsu T, Kawasaki M, Takahashi F. Numerical study of q-ball formation in gravity mediation. J Cosmol Astropart Phys 2010;2010(06):008.

    Article  Google Scholar 

  26. Han X. Global existence of weak solutions for a logarithmic wave equation arising from q-ball dynamics. Bull Korean Math Soc 2013;50(1):275–83.

    Article  MathSciNet  Google Scholar 

  27. Kafini M, Messaoudi S. Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay. Appl Anal 2018;99(3):1–18.

    MathSciNet  MATH  Google Scholar 

  28. Peyravi A. 2018. General stability and exponential growth for a class of semi-linear wave equations with logarithmic source and memory terms. Applied Mathematics & Optimization 1–17.

  29. Xu R, Lian W, Kong X, Yang Y. Fourth order wave equation with nonlinear strain and logarithmic nonlinearity. Appl Numer Math 2019;141: 185–205.

    Article  MathSciNet  Google Scholar 

  30. Lian W, Xu R. Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv Nonlinear Anal 2019;9(1):613–32.

    Article  MathSciNet  Google Scholar 

  31. Wang X, Chen Y, Yang Y, Li J, Xu R. Kirchhoff-type system with linear weak damping and logarithmic nonlinearities. Nonlinear Anal 2019; 188:475–99.

    Article  MathSciNet  Google Scholar 

  32. Al-Gharabli MM, Guesmia A, Messaoudi SA. Well-posedness and asymptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity. Appl Anal 2018;99(1):1–25.

    MathSciNet  MATH  Google Scholar 

  33. Mustafa MI. Optimal decay rates for the viscoelastic wave equation. Math Methods Appl Sci 2018;41(1):192–204.

    Article  MathSciNet  Google Scholar 

  34. Gross L. Logarithmic Sobolev inequalities. Am J Math 1975;97(4): 1061–83.

    Article  MathSciNet  Google Scholar 

  35. Chen H, Luo P, Liu G. Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity. J Math Anal Appl 2015;422(1):84–98.

    Article  MathSciNet  Google Scholar 

  36. Berrimi S, Messaoudi SA. Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Electr J Differ Equ (EJDE)[electronic only] 2004;2004:Paper–No.

    MATH  Google Scholar 

  37. Arnol’d VI, Vol. 60. Mathematical methods of classical mechanics. Berlin: Springer Science & Business Media; 2013.

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their profound gratitude to King Fahd University of Petroleum and Minerals (KFUPM) and University of Sharjah for their continuous support.

Funding

This work was funded by KFUPM under Project #SB191037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad M. Al-Gharabli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Gharabli, M.M., Al-Mahdi, A.M. & Messaoudi, S.A. Decay Results for a Viscoelastic Problem with Nonlinear Boundary Feedback and Logarithmic Source Term. J Dyn Control Syst 28, 71–89 (2022). https://doi.org/10.1007/s10883-020-09522-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-020-09522-1

Keywords

Mathematics Subject Classification (2010)

Navigation