Skip to main content
Log in

Late Precambrian Metamorphic Complexes of the Ulutau Massif (Central Kazakhstan): Age, Composition, and Formation Settings of Protoliths

  • Published:
Geotectonics Aims and scope

Abstract

This work presents the results of a study of metamorphic rocks of the Bekturgan and Balazhezdy groups of the Precambrian Ulutau massif (Central Kazakhstan), which have been traditionally identified with the most ancient Early Precambrian complexes, comprising the massif’s basement. The protoliths of the metamorphic rocks, represented by lavas and tuffs of basalt and rhyolite–trachyrhyolite composition, sandstones, and tuffaceous sandstones, comprise a contrasted volcanic-sedimentary sequence. The obtained U‒Th–Pb zircon ages (LA–ICP MS, SHRIMP II) demonstrate that the formation of this sequence occurred during a narrow (762–788 Ma) interval during the second half of Tonian (Neoproterozoic). The metamorphic transformations of the rocks were completed before an intrusion of the alkaline syenites of the Karsakpai complex (673 ± 2 Ma), which were not subject to metamorphism. The whole-rock Nd isotopic compositions of the metamorphic rocks indicate the origin of their protoliths due to erosion and partial melting of the more ancient complexes of the Precambrian continental crust of the Ulutau massif. The Hf isotopic compositions of zircons indicate that the main stages of formation and transformation of the Ulutau continental crust occurred during the Neoarchean–Neoproterozoic and coincided with the main stages of the Precambrian magmatism in the western part of the Central Asian Orogenic Belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

Similar content being viewed by others

REFERENCES

  1. Geological Map of the Kazakh SSR, Scale 1 : 500 000, Central Kazakhstan Series (Ministry of Geology of USSR, Alma-Ata, 1981).

  2. R. K. Grigaitis, L. N. Il’chenko, and L. N. Kras’kov, “New paleontological data on Precambrian deposits of the South Ulutau (Central Kazakhstan),” Izv. Akad. Nauk SSSR. Ser. Geol., No. 1, 68–79 (1989).

  3. K. E. Degtyarev, Tectonic Evolution of Early Paleozoic Island-Arc Systems and Formation of the Continental Crust of Caledonids of Kazakhstan (GEOS, Moscow, 2012) [in Russian].

    Google Scholar 

  4. K. E. Degtyarev, A. A. Tret’yakov, A. V. Ryazantsev, A. B. Kotov, E. B. Sal’nikova, P. A. Aleksandrov, and I. V. Anisimova, “Stenian granitoids of the west Kyrgyz Ridge (North Tien Shan): Position, structure, and age determination,” Dokl. Earth Sci. 441, 1484–1488 (2011).

    Article  Google Scholar 

  5. K. E. Degtyarev, K. N. Shatagin, A. B. Kotov, E. B. Sal’nikova, M. B. Luchitskaya, A. A. Tret’yakov, and S. Z. Yakovleva, “Late Precambrian volcanoplutonic association of the Aktau-Dzhungar massif, Central Kazakhstan: Structural position and age,” Dokl. Earth Sci. 421, 879–883 (2008).

    Article  Google Scholar 

  6. N. V. Dmitrieva, E. F. Letnikova, S. I. Shkol’nik, I. A. Vishnevskaya, N. A. Kanygina, M. S. Nikolaeva, and I. V. Sharf, “Neoproterozoic metavolcanosedimentary rocks of the Bozdak Group in southern Ulutau (Central Kazakhstan): Isotope-geochemical and geochronological data,” Russ. Geol. Geophys. 57, 1969–1991 (2016).

    Article  Google Scholar 

  7. P. V. Ermolov, Topical Problems of Isotope Geology and Metallogeny of Kazakhstan (Kaz.-Ross. Univ., Karaganda, 2013) [in Russian].

    Google Scholar 

  8. Yu. A. Zaitsev and S. B. Rozanov, “Structure of Proterozoic greenstone and iron-ore series of the Karsakpai synclinorium, South Ulutau,” in Problems of Geology of Central Kazakhstan, Vol. 10 of Materials on Geology of Central Kazakhstan, Ed. by A. A. Bogdanov (Mosk. Gos. Univ., Moscow, 1971), pp. 107–122.

  9. Yu. A. Zaitsev and L. I. Filatova, “New data on the structure of Precambrian units of Ulutau,” in Problems of Geology of Central Kazakhstan, Vol. 10 of Materials on Geology of Central Kazakhstan, Ed. by A. A. Bogdanov (Mosk. Gos. Univ., Moscow, 1971), pp. 21–92.

  10. Yu. A. Zaitsev and T. N. Kheraskova, Vendian of Central Kazakhstan (Mosk. Gos. Univ., Moscow, 1979) [in Russian].

    Google Scholar 

  11. N. A. Kanygina, E. F. Letnikova, K. E. Degtyarev, A. A. Tretyakov, F. I. Zhimulev, and A. I. Proshenkin, “First results of dating detrital zircons from Late Precambrian coarse clastic sequences of Ulutau massif, Central Kazakhstan,” Dokl. Earth Sci. 483, 1384–1387 (2018).

    Article  Google Scholar 

  12. I. K. Kozakov, Early Precambrian of the Central Asian Fold Belt (Nauka, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  13. E. F. Letnikova, N. V. Dmitrieva, A. A. Tretyakov, F. I. Zhimulev, N. A. Kanygina, and I. A. Vishnevskaya, “Precambrian evolution of the Ulutau continental block, Central Kazakhstan, from LA-ICP-MS dating of zircons,” in Tectonic, Geodynamics, and Ore Genesis of Fold Belts and Platforms: Proceedings of the XLVIII Meeting on Tectonics (2016), pp. 341–345.

  14. V. S. Mileev and S. B. Rozanov, Precambrian Geology and Tectonics of Central Kazakhstan (Mosk. Gos. Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  15. O. M. Rozen, A. A. Abbyasov, A. A. Migdisov, and N. V. Bredanova, “Mineral composition of sedimentary rocks as calculated from petrochemical data using MINLITH program,” Geol. Razved., No. 1, 21–35 (1999).

  16. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985).

    Google Scholar 

  17. A. A. Tretyakov, K. E. Degtyarev, E. B. Salnikova, K. N. Shatagin, A. B. Kotov, I. V. Anisimova, and Yu. V. Plotkina, “The late Tonian Zhaunkar granite complex of the Ulutau sialic massif, Central Kazakhstan,” Dokl. Earth Sci. 473, 411–415 (2017).

    Article  Google Scholar 

  18. O. M. Turkina, F. A. Letnikov, and A. V. Levin, “Mesoproterozoic granitoids of the Kokchetav microcontinent basement,” Dokl. Earth Sci. 436, 176–180 (2011).

    Article  Google Scholar 

  19. L. I. Filatova, Precambrian of the Ulutau (Mosk. Gos. Univ., Moscow, 1962) [in Russian].

    Google Scholar 

  20. L. I. Filatova and N. A. Bogatyreva, “The oldest Precambrian deposits in the South Ulutau,” in Problems of Geology of Central Kazakhstan, Vol. 10 of Materials on Geology of Central Kazakhstan, Ed. by A. A. Bogdanov (Mosk. Gos. Univ., Moscow, 1971), pp. 92–106.

  21. L. I. Filatova, Stratigraphy and Historical-Geological (Formational) Analysis of Precambrian Metamorphic Strata of Central Kazakhstan (Nedra, Moscow, 1983) [in Russian].

    Google Scholar 

  22. Ya. E. Yudovich and M. P. Ketris, Fundamentals of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  23. V. V. Yarmolyuk, and K. E. Degtyarev, “Precambrian terranes of the Central Asian Orogenic Belt: Comparative characteristics, types, and peculiarities of tectonic evolution,” Geotectonics 53, 1–23 (2019).

    Article  Google Scholar 

  24. D. V. Alexeiev, A. V. Ryazantsev, A. Kröner, A. A. Tretyakov, X. Xia, and D. Y. Liu, “Geochemical data and zircon ages for rocks in high-pressure belt of the Chu-Yili Mountains, Southern Kazakhstan: Implication for the earliest stages of accretion in Kazakhstan and Tianshan,” J. Asian Earth Sci. 42, 805–820 (2011).

    Article  Google Scholar 

  25. T. Andersen, “Correction of common lead in U–Pb analyses that do not report 204Pb,” Chem. Geol. 192, 59–79 (2002).

    Article  Google Scholar 

  26. J. Blichert-Toft and F. Albarede, “The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system,” Earth Planet. Sci. Lett. 148, 243–258 (1997).

    Article  Google Scholar 

  27. B. Bock, S. M. McLennan, and G. N. Hanson, “Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England,” Sedimentology 45, 635–655 (1998).

    Article  Google Scholar 

  28. H.-Y. Chiu, S.-L. Chung, F.-Y. Wu, D. Liu, Y.-H. Liang, I.-J. Lin, Y. Iizuka, L.-W. Xie, Y. Wang, and M.-F. Chu, “Zircon U‒Pb and Hf isotopic constraints from Eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in Southern Tibet,” Tectonophysics 477, 3–19 (2009).

    Article  Google Scholar 

  29. R. L. Cullers, “The geochemistry of shales, siltstones, and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies,” Lithos 51, 181–203 (2000).

    Article  Google Scholar 

  30. K. Degtyarev, A. Yakubchuk, A. Tretyakov, A. Kotov, and V. Kovach, “Precambrian geology of the Kazakh Uplands and Tien Shan: An overview,” Gondwana Res. 47, 44–75 (2017).

    Article  Google Scholar 

  31. D. J. DePaolo, “Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic,” Nature 291, 193–196 (1981).

    Article  Google Scholar 

  32. B. R. Frost, C. G. Barnes, W. J. Collins, R. J. Arculus, D. J. Ellis, and C. D. Frost, “A geochemical classification for granitic rocks,” J. Petrol. 42, 2033–2048 (2001).

    Article  Google Scholar 

  33. G. E. Gehrels, “Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California,” in Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California, Vol. 347 of Geol. Soc. Am., Spec. Pap., Ed. by M. J. Soreghan and G. E. Gehrels (2000), pp. 1–17.

  34. S. Glorie, F. I. Zhimulev, M. M. Buslov, T. Andersen, D. Plavsa, A. Izmer, F. Vanhaecke, and J. De Grave, “Formation of the Kokchetav subduction-collision zone (northern Kazakhstan): Insights from zircon U‒Pb and Lu‒Hf isotope systematic,” Gondwana Res. 27, 424–438 (2015).

    Article  Google Scholar 

  35. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr isotopic systematics of river water suspended material implications for crystal evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  36. W. L. Griffin, X. Wang, S. E. Jackson, N. J. Pearson, S. Y. O’Reilly, X. Xu, and X. Zhou, “Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes,” Lithos 61, 237–269 (2002).

    Article  Google Scholar 

  37. J. W. He, W. B. Zhu, R. F. Ge, B. H. Zheng, and H. L. Wu, “Detrital zircon U–Pb ages and Hf isotopes of Neoproterozoic strata in the Aksu area, northwestern Tarim Craton: Implications for supercontinent reconstruction and crustal evolution,” Precambrian Res. 254, 194–209 (2014).

    Article  Google Scholar 

  38. Z. Y. He, R. Klemd, Z. M. Zhang, K. Q. Zong, L. X. Sun, Z. L. Tian, and B. T. Huang, “Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan Arc Terrane of the southern Central Asian Orogenic Belt: Geochronological and geochemical evidence,” Lithos 236–237, 74–89 (2015).

    Article  Google Scholar 

  39. M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data,” J. Sediment. Res. 58, 820–829 (1988).

    Google Scholar 

  40. A. Q. Hu, G. J. Wei, B. M. Jahn, J. B. Zhang, W. F. Deng, and L. L. Chen, “Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen, NW China: Constraints from the SHRIMP zircon age determination and its tectonic significance,” Geochimica 39, 197–212 (2010).

    Google Scholar 

  41. B. T. Huang, Z. Y. He, K. Q. Zong, and Z. M. Zhang, “Zircon U–Pb and Hf isotopic study of Neopeoterozoic granitic gneisses from the Alatage area, Xingjiang: Constraints on the Precambrian crustal evolution in the Central Tianshan Block,” Chin. Sci. Bull. 59, 100–112 (2014).

    Article  Google Scholar 

  42. S. E. Jackson, N. J. Pearson, W. L. Griffin, and E. A. Belousova, “The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology,” Chem. Geol. 211, 47–69 (2004).

    Article  Google Scholar 

  43. S. B. Jacobsen and G. J. Wasserburg, “Sm‒Nd evolution of chondrites and achondrites,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  44. T. N. Irvine and W. R. A. Baragar, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8, 523–548 (1971).

    Article  Google Scholar 

  45. I. Katayama, S. Maruyama, C. D. Parkinson, K. Terada, and Y. Sano, “Ion microprobe U–Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan,” Earth Planet. Sci. Lett. 188, 185–198 (2001).

    Article  Google Scholar 

  46. A. K. Khudoley, R. H. Rainbird, R. A. Stern, A.  P.  Kropachev, L. M. Heaman, A. M. Zanin, V. N. Podkovyrov, V. N. Belova, and V. I. Sukhorukov, “Sedimentary evolution of the Riphean–Vendian basin of southeastern Siberia,” Precambrian Res. 111, 129–163 (2001).

    Article  Google Scholar 

  47. V. Kovach, K. Degtyarev, A. Tretyakov, A. Kotov, E. Tolmacheva, K.-L. Wang, S.-L. Chung, H.-Y. Lee, and B.-M. Jahn, “Sources and provenance of the Neoproterozoic placer deposits of the northern Kazakhstan: Implication for continental growth of the western Central Asian Orogenic Belt,” Gondwana Res. 47, 28–43 (2017).

    Article  Google Scholar 

  48. A. Kröner, D. V. Alexeiev, V. P. Kovach, Y. Rojas-Agramonte, A. A. Tretyakov, A. V. Mikolaichuk, H. Xie, and E. R. Sobel, “Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3 to 1.8 Ga Kuilyu complex, East Kyrgyzstan – The oldest continental basement fragment in the Tianshan orogenic belt,” J. Asian Earth Sci. 135, 122–135 (2017).

    Article  Google Scholar 

  49. A. Kröner, V. Kovach, E. Belousova, E. Hegner, R. Armstrong, A. Dolgopolova, R. Seltmann, D. V. Alexeiev, J. E. Hoffmann, J. Wong, M. Sun, K. Cai, T. Wang, Y. Tong, S. A. Wilde, et al., “Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt,” Gondwana Res. 25, 103–125 (2015).

    Article  Google Scholar 

  50. A. Kröner, D. V. Alexeiev, Y. Rojas-Agramonte, E. Hegner, J. Wong, X. Xia, E. Belousova, A. V. Mikolaichuk, R. Seltmann, D. Liu, and V. V. Kiselev, “Mesoproterozoic (Grenville-age) terranes in the Kyrgyz North Tianshan: Zircon ages and Nd‒Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen,” Gondwana Res. 23, 272–295 (2013).

    Article  Google Scholar 

  51. A. Kröner, D. V. Alexeiev, E. Hegner, Y. Rojas-Agramonte, M. Corsini, Y. Chao, J. Wong, B. F. Windley, D. Liu, and A. A. Tretyakov, “Zircon and muscovite ages, geochemistry and Nd‒Hf isotopes for the Aktyuz metamorphic terrane: Evidence for an Early Ordovician collision belt in the northern Tianshan of Kyrgyzstan,” Gondwana Res. 21, 901–927 (2012).

    Article  Google Scholar 

  52. A. Kröner, B. F. Windley, G. Badarch, O. Tomurtogoo, E. Hegner, B. M. Jahn, S. Gruschka, E. V. Khain, A. Demoux, and M. T. D. Wingate, “Accretionary growth and crust formation in the Central Asia Orogenic Belt and comparison with the Arabian-Nubian shield,” in 4-D Framework of Continental Crust, Vol. 200 of Geol. Soc. Am., Mem., Ed. by R. D. Hatcher, Jr., M. P. Carlson, J. H. McBride, and J. R. Martínez-Catalán (2007), pp. 181–209. https://doi.org/10.1130/2007.1200(11)

  53. M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. Zanettin, “A chemical classification of volcanic rocks based on the total alkali-silica diagram,” J. Petrol. 27, 745–750 (1986).

    Article  Google Scholar 

  54. N. M. Levashova, J. G. Meert, A. S. Gibsher, W. C. Grice, and M. L. Bazhenov, “The origin of microcontinents in the Central Asian Orogenic Belt: Constraints from paleomagnetism and geochronology,” Precambrian Res. 185, 37–54 (2011).

    Article  Google Scholar 

  55. Y. Liu, S. Gao, Z. Hu, C. Gao, K. Zong, and D. Wang, “Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U‒Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths,” J. Petrol. 51, 537–571 (2010).

    Article  Google Scholar 

  56. K. R. Ludwig, Isoplot v. 4.15: A Geochronological Toolkit for Microsoft Excel, No. 4 of Berkeley Geochronol. Center Spec. Publ. (2008).

  57. H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299, 715–717 (1982).

    Article  Google Scholar 

  58. J. A. Pearce and R. J. Stern, “Origin of back-arc basin magmas: Trace element and isotope perspectives,” in Back-Arc Spreading Systems: Geological, Biological, Chemical and Physical Interactions, Vol. 166 of Am. Geophys. Union, Geophys. Monogr. Ser., Ed. by D. M. Christie, C. R. Fisher, S. M. Lee, and S. Givens (Am. Geophys. Union, 2006), pp. 63–86.

  59. J. A. Pearce, “Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust,” Lithos 100, 14–48 (2008).

    Article  Google Scholar 

  60. A. V. Pilitsyna, A. A. Tretyakov, K. E. Degtyarev, E. B. Salnikova, A. B. Kotov, V. P. Kovach, K.-L. Wang, and V. G. Batanova, “Early Palaeozoic metamorphism of Precambrian crust in the Zheltau terrane (Southern Kazakhstan; Central Asian Orogenic belt): P-T paths, protoliths, zircon dating and tectonic implications,” Lithos 324–325, 115–140 (2019).

    Article  Google Scholar 

  61. M. Roddaz, S. Brusset, and P. Baby, “Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments,” Chem. Geol. 226, 31–65 (2006).

    Article  Google Scholar 

  62. D. M. Shaw, “The origin of the Apsley gneiss, Ontario,” Can. J. Earth Sci. 9, 18–35 (1972).

    Article  Google Scholar 

  63. J. Sláma, J. Košler, D. J. Condon, J. L. Crowley, A. Gerdes, J. M., Hanchar M. S. A. Horstwood, G. A. Morris, L. Nasdala, N. Norberg, U. Schaltegger, B. Schoene, M. N. Tubrett, and M. J. Whitehouse, “Plešovice zircon—A new natural reference material for U‒Pb and Hf isotopic microanalysis,” Chem. Geol. 249, 1–35 (2008).

    Article  Google Scholar 

  64. U. Söderlund, P. J. Patchett, J. D. Vervoort, and C. E. Isachsen, “The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions,” Earth Planet. Sci. Lett. 219, 311–324 (2004).

    Article  Google Scholar 

  65. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Vol. 42 of Geol. Soc. London, Spec. Publ., Ed. by A. D. Saunders and M. J. Norry (1989), pp. 313–345.

  66. T. Tanaka, S. Togashi, H. Kamioka, H. Amakawa, H. Kagami, T. Hamamoto, M. Yuhara, Y. Orihashi, S. Yoneda, H. Shimizu, T. Kunimaru, K. Takahashi, T. Yanagi, T. Nakano, H. Fujimaki, et al., “Ndi-1: A neodymium isotopic reference in consistency with La Jolla neodymium,” Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  67. A. A. Tretyakov, A. V. Pilitsyna, K. E. Degtyarev, N.  A.  Kanygina, E. B. Salnikova, V. P. Kovach, H.‑Y. Lee, K.-L. Wang, V. G. Batanova, and E. V. Kovalchuk, “Neoproterozoic granitoid magmatism and granulite metamorphism in the Chu-Kendyktas terrane (Southern Kazakhstan, Central Asian orogenic belt): Zircon dating, Nd isotopy and tectono-magmatic evolution,” Precambrian Res. 332 (2019). https://doi.org/10.1016/j.precamres.2019.105397

  68. E. Van Achterbergh, C. G. Ryan, S. E. Jackson, and W. L. Griffin, “Data reduction software for LA-ICP-MS,” in Laser Ablation ICP-MS in the Earth Sciences, Vol. 29 of Short Course Ser. - Mineral. Assoc. Can., Ed. by P. J. Sylvester (2001), pp. 239–243.

  69. Y. S. Wan, B. Song, D. Y. Liu, S. A. Wilde, J. S. Wu, Y. R. Shi, X. Y. Yin, and H. Y. Zhou, “SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event,” Precambrian Res. 149, 249–271 (2006).

    Article  Google Scholar 

  70. B. Wang, H. Liu, L. Shu, B.-M. Jahn, S. Chung, Y. Zha, and D. Liu, “Early Neoproterozoic crustal evolution in Northern Yili Block: Insights from migmatite, orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan,” Precambrian Res. 242, 58–81 (2014).

    Article  Google Scholar 

  71. M. P. A. Wiedenbeck, P. Allé, F. Corfu, W. L. Griffin, M. Meier, F. Oberli, A. von Quadt, J. C. Roddick, and W. Spiegel, “Three natural zircon standards for U‒Th‒Pb, Lu‒Hf, trace element and REE analyses,” Geostand. Geoanal. Res. 19, 1–23 (1995).

    Article  Google Scholar 

  72. J. B. Whalen, K. L. Currie, and B. W. Chappell, “A‑type granites: Geochemical characteristics, discrimination and petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987).

    Article  Google Scholar 

  73. I. S. Williams, “U‒Th‒Pb geochronology by ion-microprobe,” in Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Vol. 7 of Rev. Econ. Geol., Ed. by M. A. McKibben, W. C. Shanks III, and W. I. Ridley (1998), pp. 1–35 (1998).

  74. Y. B. Wu and Y. F. Zheng, “Genesis of zircon and its constraints on interpretation of U–Pb age,” Chin. Sci. Bull. 49, 1554–1569 (2004).

    Article  Google Scholar 

  75. Y. Yuan, K. Zong, Z. He, R. Klemd, Y. Liu, Z. Hu, J. Guo, and Z. Zhang, “Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the South Beishan Orogenic Belt, southernmost Central Asian Orogenic Belt,” Precambrian Res. 266, 409–424 (2015).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 20-05-00108) and performed within the State Assignment of the GIN RAS and IGM SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tretyakov.

Additional information

Reviewer: T.N. Kheraskova

Translated by D. Voroshchuk

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tretyakov, A.A., Degtyarev, K.E., Kanygina, N.A. et al. Late Precambrian Metamorphic Complexes of the Ulutau Massif (Central Kazakhstan): Age, Composition, and Formation Settings of Protoliths. Geotecton. 54, 605–627 (2020). https://doi.org/10.1134/S0016852120050106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120050106

Keywords:

Navigation