Skip to main content
Log in

Nitrogen and Carbon Isotope Composition of Gases in High-\({{p}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}}\) Waters in the North Caucasus

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents the first data on the nitrogen isotope composition of the associated gases of mineral waters in the North Caucasus and newly acquired data on the carbon isotope composition of the CO2 and CH4. Most of the samples were taken from the high-\({{p}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}}\) waters of the Elbrus and Kazbek volcanic areas in the Greater Caucasus. It is shown that δ15N changes in the range of –3.9 to +5.6‰ and synchronously increases in gases of the Caucasus Spa Area (CSA) with an increase in the N2 and CH4 concentrations. This correlation points to a genetic association of non-atmogenic nitrogen with sedimentary methane-generating processes. The values of δ13С in carbon dioxide in the Elbrus area vary from –11.8 to –3.0‰. The mean value of δ13С (СО2) tends to increase north of Elbrus volcano, and this trend may be a consequence of the increasing content of СО2 produced by the thermal decomposition of sedimentary carbonates in the composition of gases, as well as a result of low-temperature interaction of the high-\({{p}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}}\) waters with the Jurassic and Cretaceous carbonate rocks. It is shown that high-\({{p}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}}\) waters associated with Elbrus volcano often contain up to 12.4% CH4. This methane is characterized by high δ13С of –32.0 to –17.2‰. Analysis of the distribution of concentrations and δ13С values of СН4 around Elbrus and the presence of N2 with positive δ15N values in the gases suggest a crustal genesis of the methane. The role of magmatic activity in this situation is reduced to producing a temperature anomaly that activates carbon isotope exchange in the CO2–CH4 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Here and below, all concentrations of gases are given in vol %.

  2. Our earlier data Ar isotope composition in the Elbrus area (Lavrushin, 2012) show that it is of air provenance and possesses 40Ar/36Ar ratios close to those of atmospheric Ar: 40Ar/36Arа = 295.5.

REFERENCES

  1. M. Agusto, F. Tassi, A. T. Caselli, O. Vaselli, D. Rouwet, B. Capaccioni, S. Caliro, G. Chiodini, and T. Darrah, “Gas geochemistry of the magmatic–hydrothermal fluid reservoir in the Copahue–Caviahue Volcanic Complex (Argentina),” J. Volcanol. Geotherm. Res. 257, 44–56 (2013).

    Google Scholar 

  2. L. N. Barabanov and V. N. Distler, Nitrogen Thermal Vents of the USSR (Geominvod, Moscow, 1968) [in Russian].

    Google Scholar 

  3. Y. Bottinga, “Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–CO2–graphite–methane–hydrogen and water vapor,” Geochim. Cosmochim. Acta 33, 49–64 (1969).

    Google Scholar 

  4. Carbonated Mineral Waters of North Caucasus, Ed. by I. Ya. Panteleeva (AN SSSR. Moscow, 1963) [in Russian].

    Google Scholar 

  5. P. Cartigny and B. Marty, “Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere–crust–mantle connection,” Elements 9, 359–366 (2013).

    Google Scholar 

  6. E. M. Galimov, Geochemistry of Stable Carbon Isotopes (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  7. E. M. Galimov, Carbon Isotopes in Petroleum Geology (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  8. E. M. Galimov, “Isotope organic geochemistry,” Org. Geochem 37, 1200–1262 (2006).

    Google Scholar 

  9. D. B. Gesch, K. L. Verdin, and S. K. Greenlee “New land surface digital elevation model covers the Earth,” EOS, Trans. Amer. Geophys. Union 80 (6), 69–70 (1999).

    Google Scholar 

  10. J. Horita, “Carbon isotope exchange in the system CO2–CH4 at elevated temperatures,” Geochim. Cosmochim. Acta 65, 1907–1919 (2001).

    Google Scholar 

  11. M. Javoy, F. Pineau, and H. Delorme “Carbon and nitrogen isotopes in the mantle,” Chem. Geol. 57(1), 41–62 (1986).

    Google Scholar 

  12. N. V. Koronovsky and L. I. Demina, “Late Cenozoic magmatism of the Greater Caucasus,” Greater Caucasus in the Alpine Epoch, Ed. by Yu. G. Leonov (Geos, Moscow, 2007), pp. 251–284 [in Russian].

    Google Scholar 

  13. O. E. Kostenko and V. Yu. Lavrushin, “The first measurements of δ13C in methane from CO2-rich springs near the Elbrus Volcano,” Dokl. Earth Sci. 404 (1), 1059–1063 (2005).

    Google Scholar 

  14. V. Yu. Lavrushin, B. G. Polyak, B. G. Pokrovsky, E. O. Dubinina, A. S. Avdeenko, and O. E. Kostenko, “Youngest volcanism and carbonated waters,” Modern Methods of Geological–Geophysical Monitoring of Natural Processes in Kabardino–Balkaria (IFZ RAN, Moscow, 2005), pp. 128–155 [in Russian].

    Google Scholar 

  15. V. Yu. Lavrushin, Underground Fluids of the Greater Caucasus and its Surrounding, Ed. by B. G. Polyak (GEOS, Moscow, 2012) [in Russian].

    Google Scholar 

  16. V. Yu. Lavrushin, A. Aidarkozhina, A. B. Kuznetsov, and S. N. Kokh, “Geochemical indicators of genesis and conditions of formation of fluid systems of the mud volcanoes of the Western Kuban trough, Lithology of Sedimentary Complexes of Eurasia and Shelf Areas. Proceedings of 9th All–Russian Lithological Conference (with (International Participation), Kazan, Russia, 2019 (Kazan. Univ., Kazan, 2019), pp. 237–238 [in Russian].

  17. V. Yu. Lavrushin, A. B. Lisenkov, and A. S. Aidarkozhina, Genesis of the Yessentuki Deposit of Carbonated Waters, North Caucasus, Geochem. Int. 58 (1), 77–91 (2020).

    Google Scholar 

  18. B. A. Mamyrin and I. N. Tolstikhin, Helium Isotopes in Nature (Energoizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  19. Yu. P. Masurenkov, “Tectonics, magmatism, and carbonated mineral waters of the Elbrus region,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 5, 45–57 (1961).

  20. E. S. Matveeva I. N. Tolstikhin, and V. P. Yakutseni, “Isotope helium criterion for gas origin and revealing neotectonogenesis zones (evidence from Caucasus),” Geokhimiya, No. 3, 307–317 (1978).

    Google Scholar 

  21. E. E. Milanovsky and N. V. Koronovsky, Orogenic Volcanism and Tectonics of the Eurasian Alpine Belt (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  22. E. C. Mitchell, T. P. Fischer, D. R. Hilton, E. H. Hauri, A. M. Shaw, J. M. de Moor, Z. D. Sharp, and K. Kazahaya, “Nitrogen sources and recycling at subduction zones: Insights from the Izu–Bonin–Mariana arc,” Geochem. Geophys. Geosyst. 11, Q02X11 (2010). https://doi.org/10.1029/2009GC002783

    Article  Google Scholar 

  23. A. M. Ovchinnikov, “Main principles of zoning of mineral waters of Caucasus,” Tr. MGRI, Ed. by V. V. Belousov and E. E. Zakharova (Mingeo USSR, Moscow–Leningrad, (1948), Vol. 23, pp. 139–150 [in Russian].

    Google Scholar 

  24. H. Philip, A. Cisternas, A. Gvishiani, and A. Gorshkov, “The Caucasus: an actual example of the ininitial stages of continental collision,” Tectonophys. 161, 1–21 (1989).

    Google Scholar 

  25. B. G. Polyak, I. N. Tolstikhin, L. E. Yakovlev, B. Marty, and A. L. Cheshko, “Helium isotopes, tectonics and heat flow in the Northern Caucasus,” Geochim. Cosmochim. Acta. 64(11), 1925–1944 (2000).

    Google Scholar 

  26. B. G. Polyak, V. Yu. Lavrushin, and I. L. Kamensky, “Mantle helium traces in the Elbrus–Kazbek sector of the Greater Caucasus and adjacent areas,” Chem. Geol. 266, 57–66 (2009).

    Google Scholar 

  27. B. G. Polyak, B. Yu. Lavrushin, S. Inguaggiato, and O. E. Kikvadze, “Helium isotopes in gases of mineral waters in the Western Caucasus,” Lithol. Miner. Resour. 46 (6), 495–506 (2011).

    Google Scholar 

  28. E. M. Prasolov, Isotope Geochemistry and Origin of Natural Gases (Nedra, Leningrad, 1990) [in Russian].

    Google Scholar 

  29. Y. Sano and B. Marty, “Origin of carbon in fumarolic gas form island arcs,” Chem. Geol. 119, 265–274 (1995).

    Google Scholar 

  30. V. P. Shcherbak, “Some geochemical features of the gas potential of the Elbrus region,” Geokhimiya, No. 7, 889–894 (1965).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 18-17-00245

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Lavrushin, E. M. Prasolov or E. G. Potapov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrushin, V.Y., Aydarkozhina, A.S., Pokrovsky, B.G. et al. Nitrogen and Carbon Isotope Composition of Gases in High-\({{p}_{{{\text{C}}{{{\text{O}}}_{{\text{2}}}}}}}\) Waters in the North Caucasus. Geochem. Int. 58, 1262–1277 (2020). https://doi.org/10.1134/S0016702920110087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920110087

Keywords:

Navigation