Skip to main content
Log in

The Linear Stability of Reissner–Nordström Spacetime: The Full Subextremal Range \(|Q|<M\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the linear stability of subextremal Reissner–Nordström spacetimes as solutions to the Einstein–Maxwell equation. We make use of a novel representation of gauge-invariant quantities which satisfy a symmetric system of coupled wave equations. This system is composed of two of the three equations derived in our previous works (Giorgi in Ann Henri Poincar, 21: 24852580, 2020; Giorgi in Class Quantum Grav 36:205001, 2019), where the estimates required arbitrary smallness of the charge. Here, the estimates are obtained by defining a combined energy-momentum tensor for the system in terms of the symmetric structure of the right hand sides of the equations. We obtain boundedness of the energy, Morawetz estimates and decay for the full subextremal range \(|Q|<M\), completely in physical space. Such decay estimates, together with the estimates for the gauge-dependent quantities of the perturbations obtained in Giorgi (Ann PDE 6:8, 2020), settle the problem of linear stability to gravitational and electromagnetic perturbations of Reissner–Nordström solution in the full subextremal range \(|Q|< M\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. The proof is obtained in Bondi gauge, see [22].

  2. In a linearization of size \(\epsilon \), a quantity is called gauge invariant if it changes quadratically, i.e. by terms of the size \(\epsilon ^2\), when coordinate transformations of size \(\epsilon \) are applied. See [22].

  3. A null frame \(\{ e_3, e_4, e_A \}_{A=1,2}\) is such that \(g\left( e_3,e_3\right) = 0\), \(g\left( e_4,e_4 \right) = 0\), \( g\left( e_3,e_4\right) = -2\), and \(e_A\) are orthogonal to \(e_3\) and \(e_4\).

  4. The spin \(\pm \,2\) refers to 2-tensors on the sphere.

  5. The spin \(\pm \,1\) refers to 1-tensors on the sphere.

  6. This was basically the approach of our derivation of the estimates in [20].

  7. It is interesting to observe that the one equation used in [13] to prove the linear stability of Schwarzschild can be neglected in Reissner–Nordström in favor of the two equations above (which have no correspondence in the gravitational perturbations of Schwarzschild).

  8. This case is contained in the case of \(|Q| \ll M\) treated in [20, 21].

  9. Conditions 4 and 5 are not necessary. For example, one could use the positivity of the R derivative to absorb part of the mixed term for high spherical harmonics. Nevertheless, we prefer to have a unique approach to all frequencies.

  10. Our definition of w (56) differs from [33] in that there w is defined separately in two intervals, as opposed to three, and in one of them \(w=\frac{2}{r} \varUpsilon \), as opposed to \(w=\frac{2}{r^2} \varUpsilon \). We modified it in order to obtain positivity of the bulk in the exterior region for the full subextremal range \(|Q|<M\). The definition of f in terms of w is identical to [33, 44].

References

  1. Andersson L., Bäckdahl T., Blue P., Ma S.: Stability for linearized gravity on the Kerr spacetime. arXiv preprint arXiv:1903.03859 (2019)

  2. Angelopoulos Y., Aretakis S., Gajic D.: Nonlinear scalar perturbations of extremal Reissner–Nordström spacetimes. arXiv preprint arXiv:1908.00115 (2019)

  3. Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations I. Commun. Math. Phys. 307(1), 17–63 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  4. Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations II. Annales Henri Poincaré 12(8), 1491–1538 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bardeen, J.M., Press, W.H.: Radiation fields in the Schwarzschild background. J. Math. Phys. 14, 7–19 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bieri, L., Zipser, N.: Extensions of the stability theorem of the Minkowski space in general relativity. Stud. Adv. Math. AMS/IP 45, (2000)

  7. Blue, P.: Decay of the maxwell field on the Schwarzschild manifold. J. Hyperbolic Differ. Equ. 5(4), 807–856 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chandrasekhar, S.: The gravitational perturbations of the Kerr black hole I. The perturbations in the quantities which vanish in the stationary state. Proc. R. Soc. Lond. A 358, 421 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chandrasekhar, S.: On the equations governing the perturbations of the Reissner–Nordström black hole. Proc. R. Soc. London A 365, 453–65 (1979)

    Article  ADS  Google Scholar 

  10. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  11. Christodoulou, D.: Mathematical problems of general relativity. I. Zurich Lectures in Advanced Mathematics, EMS (2008)

  12. Christodoulou D., Klainerman S.: The global nonlinear stability of the Minkowski space. Princeton Math. Series 41, Princeton University Press, Princeton (1993)

  13. Dafermos, M., Holzegel, G., Rodnianski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations. Acta Math. 222, 1–214 (2019)

    Article  MathSciNet  Google Scholar 

  14. Dafermos, M., Holzegel, G., Rodnianski, I.: Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case \(|a|\ll M\). Ann. PDE 5, 2 (2019)

    Article  MathSciNet  Google Scholar 

  15. Dafermos, M., Rodnianski, I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math 62, 859–919 (2009)

    Article  MathSciNet  Google Scholar 

  16. Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: XVIth International Congress on Mathematical Physics 421–433, (2009)

  17. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Evolution equations, Clay Mathematics Proceedings, Vol. 17, pp. 97-205. Amer. Math. Soc., New York (2013)

  18. Dotti, G.: Nonmodal linear stability of the Schwarzschild black hole. Phys. Rev. Lett. 112, 191101 (2014)

    Article  ADS  Google Scholar 

  19. Fernández, Tío, J.M., Dotti, G.: Black hole nonmodal linear stability under odd perturbations: the Reissner–Nordström case. Phys. Rev. 12, 124041 (2017)

  20. Giorgi, E.: Boundedness and decay for the Teukolsky system of spin \(\pm 2\) on Reissner-Nordström spacetime: the case \(|Q| \ll M\). Ann. Henri Poincaré 21, 2485–2580 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. Giorgi, E.: Boundedness and decay for the Teukolsky system of spin \(\pm 1\) on Reissner–Nordström spacetime: the \(\ell =1\) spherical mode. Class. Quantum Grav. 36, 205001 (2019)

    Article  ADS  Google Scholar 

  22. Giorgi, E.: The linear stability of Reissner-Nordström spacetime for small charge. Ann. PDE 6, 8 (2020)

    Article  Google Scholar 

  23. Griffiths, J.B., Podolsky, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge University Press, Cambridge Monographs on Mathematical Physics, Cambridge (2009)

    Book  Google Scholar 

  24. Häfner, D., Hintz, P., Vasy, A.: Linear stability of slowly rotating Kerr black holes. arXiv preprint arXiv:1906.00860 (2019)

  25. Hintz, P.: Non-linear stability of the Kerr-Newman-de Sitter family of charged black holes. Ann. PDE 4(1), 11 (2018)

    Article  MathSciNet  Google Scholar 

  26. Hintz, P., Vasy, A.: Stability of Minkowski space and polyhomogeneity of the metric. arXiv preprint arXiv:1711.00195 (2017)

  27. Hintz, P., Vasy, A.: The global non-linear stability of the Kerr-de Sitter family of black holes. Acta Math. 220, 1–206 (2018)

    Article  MathSciNet  Google Scholar 

  28. Hung, P.-K. , Keller, J. , Wang, M.-T.: Linear stability of schwarzschild spacetime: the cauchy problem of metric coefficients. arXiv preprint arXiv:1702.02843 (2017)

  29. Hung, P.-K.: The linear stability of the Schwarzschild spacetime in the harmonic gauge: odd part. arXiv preprint arXiv:1803.03881 (2018)

  30. Hung, P.-K.: The linear stability of the Schwarzschild spacetime in the harmonic gauge: even part. arXiv preprint arXiv:1909.06733 (2019)

  31. Johnson, T.: The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge. arXiv preprint arXiv:1810.01337 (2018)

  32. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11(5), 237–238 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  33. Klainerman, S., Szeftel, J.: Global non-linear stability of schwarzschild spacetime under polarized perturbations. arXiv preprint arXiv:1711.07597 (2017)

  34. Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in harmonic gauge. Ann. Math. 171(3), 1401–1477 (2010)

    Article  MathSciNet  Google Scholar 

  35. Ma, S.: Uniform energy bound and Morawetz estimate for extreme component of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity. arXiv preprint arXiv:1708.07385 (2017)

  36. Moncrief, V.: Odd-parity stability of a Reissner–Nordström black hole. Phys. Rev. D 9, 2707 (1974)

    Article  ADS  Google Scholar 

  37. Moncrief, V.: Stability of Reissner–Nordström black holes. Phys. Rev. D 10, 1057 (1974)

    Article  ADS  Google Scholar 

  38. Moncrief, V.: Gauge-invariant perturbations of Reissner–Nordström black holes. Phys. Rev. D 12, 1526 (1974)

    Article  ADS  Google Scholar 

  39. Newman, E.T., Janis, A.I.: Note on the Kerr spinning-particle metric. J. Math. Phys. 6, 915–917 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  40. Nordström, G.: On the Energy of the Gravitational Field in Einstein’s Theory. Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., Amsterdam. 26, 1201–1208 (1918)

    MATH  Google Scholar 

  41. Pasqualotto, F.: The spin \(\pm 1\) Teukolsky equations and the Maxwell system on Schwarzschild. Annales Henri Poincaré 20, 1263–323 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  42. Regge, T., Wheeler, J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 2(108), 1063–1069 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  43. Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Berl. Akad. Ber. 1, 189–196 (1916)

    MATH  Google Scholar 

  44. Stogin, J.: Global stability of the nontrivial solutions to the wave map problem from Kerr \(|a| \ll M\) to the hyperbolic plane under axisymmetric perturbations preserving angular momentum. arXiv preprint arXiv:1610.03910 (2016)

  45. Teukolsky, S.A.: Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic and neutrino-field perturbations. Astrophys. J. 185, 635–647 (1973)

    Article  ADS  Google Scholar 

  46. Whiting, B.F.: Mode stability of the Kerr black hole. J. Math. Phys. 30(6), 1301–1305 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  47. Zerilli, F.J.: Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737–738 (1970)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Pei-Ken Hung and Yakov Shlapentokh-Rothman for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Giorgi.

Additional information

Communicated by P. Chrusciel

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgi, E. The Linear Stability of Reissner–Nordström Spacetime: The Full Subextremal Range \(|Q|<M\). Commun. Math. Phys. 380, 1313–1360 (2020). https://doi.org/10.1007/s00220-020-03893-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03893-z

Navigation