Skip to main content

Advertisement

Log in

Petrography and stable oxygen and carbon isotopic composition of the Antalo Limestone, Mekelle Basin, Northern Ethiopia: implications for marine environment and deep-burial diagenesis

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The depositional environment of the Antalo Limestone was previously interpreted from regional field-based studies and microfacies. However, stable oxygen and carbon isotopes are also invaluable proxies of paleo-environmental conditions, depositional, and diagenetic environments. Hence, the analyses of stable oxygen and carbon isotopic composition of this unit were examined from bulk limestone samples and integrated with a detailed petrographic study to interpret depositional environments and diagenetic evolution. The samples were collected from three outcrop sections, which together represent the full thickness of the unit. The microfacies identified from these samples indicate shallow–deep marine depositional as well as meteoric phreatic, marine phreatic, and deep burial diagenetic environments. The limits of variations of the oxygen isotopic ratios range from − 10.46 to − 3.56‰, with − 6.07‰ mean value. The limits of variations of the carbon isotopic ratios range from − 0.02 to 2.56‰, with 1.4‰ mean value. The calculated z values range from 123.08 to129.7 and the paleo-temperatures are estimated to be 32.4–73.52 °C, with an average temperature of 46.5 °C. The carbon isotope ratios indicate marine-water sources. This was confirmed from z values (> 120), indicating that the samples are marine carbonates. The depleted oxygen isotope ratios and high-temperature values, on the other hand, represent deep-burial diagenesis, which indicates the isotopic composition and the temperature conditions of the cement precipitating diagenetic fluids. The compositional fields of the δ18O–δ13C cross plots, also indicate marine carbonates subjected to mixing zone–deep-burial diagenesis. Therefore, both the petrographic and stable oxygen and carbon isotopic evidences are mutually in agreement, indicating related depositional and diagenetic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arkin Y, Beyth M, Dow DB, Levitte D, Haile T, Hailu T (1971) Geological map of-mekele sheet-ND-37-11-Tigre Province. Ministry of Mines, Geological Survey of Ethiopia, Addis Ababa

    Google Scholar 

  • Ayalew D, Yirgu G (2003) Crustal contribution to the genesis of Ethiopian plateau rhyolitic ignimbrite: basalt and rhyolite geochemical provinciality. J Geol Soc London 160:47–56. https://doi.org/10.1144/0016-764901-169

    Article  Google Scholar 

  • Ayalew D, Barbey P, Marty B, Reisberg L, Yirgu G, Pik R (2002) Source, genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts. Geochim Cosmochim Acta 66:1429–1448

    Article  Google Scholar 

  • Bathurst RGC (1966) Boring algae, micrite envelopes, and lithification of molluscan biosparites. Geol J 5:15–32

    Article  Google Scholar 

  • Beccaluva L, Bianchini G, Natali C, Siena F (2009) Continental flood basalts and mantle plumes: a case study of the Northern Ethiopian Plateau. J Petrol 00:1–27. https://doi.org/10.1093/petrology/egp024

    Article  Google Scholar 

  • Beyth M (1972) Paleozoic-Mesozoic Sedimentary Basin of Mekele Outlier, Northern Ethiopia. AAPG Bull 56:2426–2439. https://doi.org/10.1306/819A422A-16C5-11D7-8645000102C1865D

    Article  Google Scholar 

  • Beyth M, Avigad D, Wetzel H, Matthews A, Berhe SM (2003) Crustal exhumation and indications for Snowball Earth in the East African Orogen: north Ethiopia and east Eritrea. Precambr Res 123:187–201. https://doi.org/10.1016/S0301-9268(03)00067-6

    Article  Google Scholar 

  • Bishop JW, Osleger DA, Montañez IP, Sumner DY (2014) Meteoric diagenesis and fluid-rock interaction in the Middle Permian Capitan backreef: Yates Formation, Slaughter Canyon, New Mexico. AAPG Bull 98(8):1495–1519. https://doi.org/10.1306/05201311158

    Article  Google Scholar 

  • Blanford WT (1869) Observations on the geology and zoology of Abyssinia. MacMillan, London

    Google Scholar 

  • Bosellini A, Russo A, Fantozzi PL, Assefa G, Solomon T (1997) The Mesozoic Succession of the Mekele Outlier (Tigre Province, Ethiopia). Memorie di Sci Geol 49:95–116

    Google Scholar 

  • Bosence DWJ, Allison PA (1995) A review of marine palaeoenvironmental analysis from fossils. Geol Soc Spec Pub 83:1–5. https://doi.org/10.1144/GSL.SP.1995.083.01.01

    Article  Google Scholar 

  • Bussert R (2010) Exhumed erosional landforms of the Late Palaeozoic glaciation in northern Ethiopia: indicators of ice-flow direction, palaeolandscape, and regional ice dynamics. Gondwana Res 18:356–369. https://doi.org/10.1016/j.gr.2009.10.009

    Article  Google Scholar 

  • Bussert R, Schrank E (2007) Palynological evidence for the latest Carboniferous-Early Permian glaciation in Northern Ethiopia. J Afr Earth Sc 49:201–210. https://doi.org/10.1016/j.jafrearsci.2007.09.003

    Article  Google Scholar 

  • Chaves NS, Sial AN (1998) Mixed oceanic and freshwater depositional conditions for beachrocks of Northeast Brazil: evidence from carbon and oxygen isotopes. Int Geol Rev 40:748–754

    Article  Google Scholar 

  • Choquette PW, James NP (1986) Diagenesis in limestone-3. The deep burial environment. Geosci Canada 14:3–35

    Google Scholar 

  • Christ N, Immenhauser A, Wood R, Darwich K, Niedermayr A (2015) Petrography and environmental controls on the formation of Phanerozoic marine carbonate hardgrounds. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2015.10.002

    Article  Google Scholar 

  • Copper P (1992) Organisms and carbonate substrates in marine environments. Geosci Can 19:97–112

    Google Scholar 

  • Corfield RM (1995) An introduction to the techniques, limitations, and landmarks of carbonate oxygen isotope palaeo-thermometry. In: Bosence DWJ, Allison PA (eds) Marine palaeoenvironmental analysis from fossils, vol 83. Geological Society Special Publication, London, pp 27–42

    Google Scholar 

  • Cuna S, Pop D, Hosu A (2001) Carbon and oxygen isotope ratios in Rona Limestone, Romania. Studia Univ Babeş-Bolyai Geol XLVI:140–151

    Google Scholar 

  • Dawit E (2010) Adigrat sandstone in Northern and Central Ethiopia: stratigraphy, facies, depositional environments and palynology. Ph.D. Thesis, pp 162. Technische Universität, Berlin

  • Des Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. In: Valley JW, Cole DR (eds) Revies in mineralogy and geochemistry: stable isotope geochemistry, vol 43. Mineraogical Sociaty of America, London, pp 555–578

    Chapter  Google Scholar 

  • Dickson T (1990) Carbonate mineralogy and chemistry. In: Tucker ME, Wright VP (eds) Carbonate sedimentology, 1st edn. Blackwell Scientific Publications, Oxford, pp 284–313

    Google Scholar 

  • Dickson JAD (2016) Diagenesis of shallow-marine carbonates. Cambridge Earth Sci Series ES 426:173–188

    Google Scholar 

  • Dow D, Beyth M, Hailu T (1971) Palaeozoic glacial rocks recently discovered in northern Ethiopia. Geol Mag 108:53–60

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. AAPG Memorandum 1:108–121

    Google Scholar 

  • Emraninasab BH, Adabi MH, Majidifard M, Ghadimvand NK (2016) Facies interpretation, depositional environment and sequence stratigraphy of the Sartakht Formation in the Bakhshi Section, Located in Kalmard Block, East-Central Iran. Open J Geol 6:314–329

    Article  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation, and application. Springer-Berlin, Heidelberg

    Book  Google Scholar 

  • Folk RL (1959) Practical petrographic classifications of limestones. AAPG Bull 43:1–38

    Google Scholar 

  • Folk RL (1974) The natural history of crystalline calcium carbonate: effect of magnesium content and salinity. J Sediment Petrol 44:40–53

    Google Scholar 

  • Friedman I, O’Neil JR (1977) Chapter KK. Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry, 6th edn. USGS Professional Paper, Washington, pp 1–12

    Google Scholar 

  • Getaneh W, Valera R (2002) Rare earth element geochemistry of the Antalo Supersequence in the Mekele Outlier (Tigray region, Northern Ethiopia). Chem Geol 182:395–407

    Article  Google Scholar 

  • Goldring R (1995) Organisms and the substrate; response and effect. In: Bosence DWJ, Allison PA (eds) Marine palaeoenvironmental analysis from fossils, vol 83. Geological Society Special Publications, London, pp 151–180

    Google Scholar 

  • Hagos M, Koeberl C, Kabeto K, Friedrich K (2010) Geochemical characteristics of the alkaline basalts and the phonolite—trachyte plugs of the Axum area, northern Ethiopia. Aust J Earth Sci 103:153–170

    Google Scholar 

  • Heckel H (1972) Recognition of ancient shallow marine environment. In: Rigby IJK, Hemblin K (eds) Recognition of ancient sedimentary environments. SEPM Special Publication, Tulsa, pp 226–286

    Chapter  Google Scholar 

  • Hodson KR, Crider JG, Huntington KW (2016) Temperature and composition of carbonate cement record early structural control on cementation in a nascent deformation band fault zone: Moab Fault, Utah, USA. Tectonophysics 690:240–252. https://doi.org/10.1016/j.tecto.2016.04.032

    Article  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry. Springer, Germany

    Google Scholar 

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc London 133:637–660

    Article  Google Scholar 

  • Hughes GWG (2004) Middle to Upper Jurassic Saudi Arabian carbonate petroleum reservoirs: biostratigraphy, micropalaeontology, and palaeoenvironments. Geo Arabia 9:79–114

    Google Scholar 

  • Jones B, Desrochers A (1992) Shallow platform carbonates. In: Walker RG, James NP (eds) Facies models response to sea level change. Geological Association of Canada, St. John’s, pp 277–302

    Google Scholar 

  • Kabeto K (2010) Geological and geochemical variations in Mid-Tertiary Ethiopian Flood Basalt Province, Maychew, Tigray Region, Ethiopia. Momona Ethiop J Sci 2:4–25

    Article  Google Scholar 

  • Kazmin V (1973) Geology of Ethiopia (explanatory note to geological map of Ethiopia 1:2,000,000). The Ethiopian Institute of Geological Surveys, Addis Ababa

    Google Scholar 

  • Kazmin V (1975) Explanation of the geological map of Ethiopia. Geological Survey of Ethiopia, Wageningen

    Google Scholar 

  • Kazmin BV, Shifferaw A, Balcha T (1978) The Ethiopian basement: stratigraphy and possible manner of evolution. Ethiop Inst Geol Surv 67(2):531–546

    Google Scholar 

  • Keith ML, Weber JN (1964) Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim Cosmochim Acta 28:1787–1816

    Article  Google Scholar 

  • Kiessling W, Pandey DK, Schemm-gregory M, Newis H, Aberhan M (2011) Marine benthic invertebrates from the Upper Jurassic of northern Ethiopia and their biogeographic affinities. J Afr Earth Sc 59:195–214. https://doi.org/10.1016/j.jafrearsci.2010.10.006

    Article  Google Scholar 

  • Kobluk D, Risk M (1977) Calcification of exposed filaments of endolithic algae, micrite envelope formation, and sediment production. J Sediment Petrol 47:517–528

    Google Scholar 

  • Leonard JE, Cameron B, Pilkey OH, Friedman GM (1981) Evaluation of cold-water carbonates as a possible palaeoclimatic indicator. Sed Geol 28:1–28

    Article  Google Scholar 

  • Longman MW (1980) Carbonate diagenetic textures from near surface diagenetic environments. AAPG Bull 64:461–487

    Google Scholar 

  • Mabrouk A, Belayouni H, Jarvis I, Moody RTJ (2006) Strontium, δ18O and δ13C as palaeo-indicators of unconformities: Case of the Aleg and Abiod formations (Upper Cretaceous) in the Miskar Field, southeastern Tunisia. Geochem J 40:405–424. https://doi.org/10.2343/geochemj.40.405

    Article  Google Scholar 

  • Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160

    Article  Google Scholar 

  • Martire L, Clari P, Pavia G (1998) Stratigraphic analysis of the Upper Jurassic (Oxfordian–Kimmeridgian) Antalo Limestone in the Mekele Outlier (Tigrai, northern Ethiopia); preliminary data. In: Crasquin-Soleau E, Barrier S (eds) Epicratonic basins of Peri-Tethyan platforms, vol 4. Memoires du Museum National d’Histoire Naturelle. Peri-Tethys Memoir, Paris, pp 131–144

    Google Scholar 

  • Mazzullo SJ, Chilingarian GV (1992) Diagenesis and origin of porosity. In: Chilingarian GV, Mazzullo SJ, Rieke HH (eds) Carbonate reservoir characterization: a geologic-engineering analysis, part I: Developments in petroleum science, vol 30. Elsevier Scientific Publishers BV, Amsterdam-London-New York-Tokyo, pp 199–270

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Melim LA, Swart PK, Maliva RG (1995) Meteoric-Like Fabrics forming in marine waters: implications for the use of petrography to identify diagenetic environments. Geology 23:755–758

    Article  Google Scholar 

  • Merla G, Minucci R (1938) Missione geologica nel Tigrai, ‘“La Serie dei Terreni”.’ Reale Acca demia d’Italia, Rome

    Google Scholar 

  • Milliman JD (1974) Marine carbonates: recent sedimentary carbonates part 1. Springer-Verlag, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Moore CH (1989) Carbonate Diagenesis and Porosity: developments in sedimentology, vol 46. Elsevier Science BV, Amsterdam

    Book  Google Scholar 

  • Moore CH (2001) Carbonate reservoirs porosity evaluation and diagenesis in a sequence stratigraphic framework: developments in sedimentology, vol 55. Elsevier BV, Amsterdam, Boston

    Google Scholar 

  • Nelson CS, Harris GJ, Young HR (1988) Burial-dominated cementation in non-tropical carbonates of the Oligocene Te Kuiti Group, New Zealand. Sed Geol 60:233–250

    Article  Google Scholar 

  • Nogueira LB, Oliveira VQ, Araújo LP et al (2019) Geochemistry and C and O isotope composition of carbonate rocks from Bemil and Lagoa Seca quarries, Gandarela Formation, Quadrilátero Ferrífero-Brazil. J S Am Earth Sci 92:609–630. https://doi.org/10.1016/j.jsames.2019.04.001

    Article  Google Scholar 

  • Rahimpour-Bonab H, Bone Y (2001) Isotopic signature of the diagenetic fluids and cement in the Tortachilla Limestone, South Australia. Iran Int J Sci 2(1):1–22

    Google Scholar 

  • Sarfi M, Yazdi-Moghadam M (2016) Stratigraphy of the Upper Jurassic shallow-marine carbonates of the Moghan area (NW Iran), with paleobiogeography implication on Alveosepta jaccardi Stratigraphy of the Upper Jurassic shallow-marine carbonates of the Moghan area (NW Iran), with paleob. Geopersia 6:187–196. https://doi.org/10.22059/jgeope.2016.59089

    Article  Google Scholar 

  • Schlagintweit F, Tesovic BC (2017) Braciana jelaskai n. gen., n. sp., a new larger benthic foraminifera from the Upper Cretaceous (Santonian?-lower Campanian) of the Dinaric-Hellenic realm. Cretac Res 72:32–38. https://doi.org/10.1016/j.cretres.2016.12.005

    Article  Google Scholar 

  • Shackleton NJ (1986) Paleogene stable isotope events. Palaeogeogr Palaeoclimatol Palaecol 57:91–102

    Article  Google Scholar 

  • Sharp Z (2017) Principles of stable isotope geochemistry. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  • Smith AM, Nelson CS (1996) Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: a synthesis and review. NZ J Geol Geophys 39:93–107

    Article  Google Scholar 

  • Tefera M, Chernet T, Haro W (1996) Explanation of the geological map of Ethiopia: scale 1: 2000,000, vol 3. Ethiopian Institute of Geological Surveys Bull, Addis Ababa

    Google Scholar 

  • Tucker ME (1993) Carbonate diagenesis and sequence stratigraphy. In: Wright VP (ed) Sedimentology Review/1, 1st edn. Blackwell Scientific Publications, Oxford, pp 51–72

    Chapter  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate Sedimentology. Blackwell Science Ltd., Edinburgh-Cambridge-USA-Australia

    Book  Google Scholar 

  • Urey HC, Lowenstam HA, Epstein S, McKinney CR (1951) Measurement of paleotemperatures and temperatures of the upper cretaceous of England, Denmark, and the Southeastern United States. Bull Geol Soc Am 62:399–416

    Article  Google Scholar 

  • Wary JL (1998) Calcareous Algae. In: Haq BU, Boersma A (eds) Introduction to Marine Micropaleontology, 2nd edn. Geological Association of Canada, St. John’s, pp 171–187

    Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer-Verlag, New York, Heidelberg, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

This work was funded by the African Union (AU). The authors would like to thank the African Union for funding the research grant. The authors are also grateful to Professor Chris Harris, Head of the Department of Geological Sciences, University of Cape Town, South Africa, for his willingness and cooperation to do isotope analysis in the Stable Isotope Laboratory of the department.

Funding

This study was funded by the African Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damenu Adefris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adefris, D., Nton, M.E., Boboye, O.A. et al. Petrography and stable oxygen and carbon isotopic composition of the Antalo Limestone, Mekelle Basin, Northern Ethiopia: implications for marine environment and deep-burial diagenesis. Carbonates Evaporites 35, 124 (2020). https://doi.org/10.1007/s13146-020-00659-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00659-5

Keywords

Navigation