Skip to main content
Log in

Genome sequence of an uncharted halophilic bacterium Robertkochia marina with deciphering its phosphate-solubilizing ability

  • Bacterial, Fungal and Virus Molecular Biology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The wide use of whole-genome sequencing approach in the modern genomic era has opened a great opportunity to reveal the prospective applications of halophilic bacteria. Robertkochia marina CC-AMO-30DT is one of the halophilic bacteria that was previously taxonomically identified without any inspection on its biotechnological potential from a genomic aspect. In this study, we present the whole-genome sequence of R. marina and demonstrated the ability of this bacterium in solubilizing phosphate by producing phosphatase. The genome of R. marina has 3.57 Mbp and contains 3107 predicted genes, from which 3044 are protein coding, 52 are non-coding RNAs, and 11 are pseudogenes. Several phosphatases such as alkaline phosphatases and pyrophosphatases were mined from the genome. Further genomic study (phylogenetics, sequence analysis, and functional mechanism) and experimental data suggested that the alkaline phosphatase produced by R. marina could potentially be utilized in promoting plant growth, particularly for plants on saline-based agricultural land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Data availability

The whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under accession QXMP00000000, with BioProject and BioSample accession PRJNA489156 and SAMN09949184, respectively. The version described in this paper is the first version (accession number QXMP01000000). The strain, Robertkochia marina CC-AMO-30DT (=JCM 18552) was obtained from the Japan Collection of Microorganisms.

References

  1. Liu C, Baffoe DK, Zhan Y, Zhang M, Li Y, Zhang G (2019) Halophile, an essential platform for bioproduction. J Microbiol Methods 166:105704. https://doi.org/10.1016/j.mimet.2019.105704

    Article  CAS  PubMed  Google Scholar 

  2. Selvaratnam C, Thevarajoo S, Goh KM, Chan K-G, Chong CS (2018) Genomic analyses of five Roseivirga species: insights into marine adaptation. Mar Genomics 38:97–101. https://doi.org/10.1016/j.margen.2017.12.008

  3. Golotin V, Balabanova L, Likhatskaya G, Rasskazov V (2015) Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. Mar Biotechnol 17(2):130–143. https://doi.org/10.1007/s10126-014-9601-0

    Article  CAS  Google Scholar 

  4. Amoozegar MA, Safarpour A, Noghabi KA, Bakhtiary T, Ventosa A (2019) Halophiles and their vast potential in biofuel production. Front Microbiol 10(1895). https://doi.org/10.3389/fmicb.2019.01895

  5. Johnson J, Sudheer PD, Yang Y-H, Kim Y-G, Choi K-Y (2017) Hydrolytic activities of hydrolase enzymes from halophilic microorganisms. Biotechnol Bioprocess Eng 22(4):450–461

    Article  CAS  Google Scholar 

  6. Yin J, Chen J-C, Wu Q, Chen G-Q (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33(7):1433–1442. https://doi.org/10.1016/j.biotechadv.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  7. Thevarajoo S, Selvaratnam C, Chan K-G, Goh KM, Chong CS (2015) Draft genome sequence of Vitellibacter vladivostokensis KMM 3516T: a protease-producing bacterium. Mar Genomics 23:49–50

  8. Lam MQ, Oates NC, Thevarajoo S, Tokiman L, Goh KM, McQueen-Mason SJ, Bruce NC, Chong CS (2020) Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics 112(1):952–960. https://doi.org/10.1016/j.ygeno.2019.06.011 

  9. Lam MQ, Nik Mut NN, Thevarajoo S, Chen SJ, Selvaratnam C, Hussin H, Jamaluddin H, Chong CS (2018) Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3. Biotech 8(2):104. https://doi.org/10.1007/s13205-018-1133-2

  10. Alves KJ, da Silva MCP, Cotta SR, Ottoni JR, van Elsas JD, de Oliveira VM, Andreote FD (2020) Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz J Microbiol 51(1):217–228

    Article  CAS  PubMed  Google Scholar 

  11. Thevarajoo S, Selvaratnam C, Chan K-G, Goh KM, Chong CS (2018) Draft genome sequence of Vitellibacter aquimaris D-24T isolated from seawater. Braz J Microbiol 49(1):10–12

  12. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2(1):587

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid Based Complement Alternat Med 2011

  15. Xiang W-l, Liang H-z, Liu S, Luo F, Tang J, Li M-y, Che Z-m (2011) Isolation and performance evaluation of halotolerant phosphate solubilizing bacteria from the rhizospheric soils of historic Dagong Brine Well in China. World J Microbiol Biotechnol 27(11):2629–2637

    Article  CAS  Google Scholar 

  16. Parte AC (2018) LPSN – list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68(6):1825–1829. https://doi.org/10.1099/ijsem.0.002786

    Article  PubMed  Google Scholar 

  17. Hameed A, Shahina M, Lin S-Y, Lai W-A, Liu Y-C, Hsu Y-H, Cheng I-C, Young C-C (2014) Robertkochia marina gen. nov., sp. nov., of the family Flavobacteriaceae, isolated from surface seawater, and emended descriptions of the genera Joostella and Galbibacter. Int J Syst Evol Microbiol 64(2):533–539. https://doi.org/10.1099/ijs.0.054627-0

    Article  CAS  PubMed  Google Scholar 

  18. Lam MQ, Vodovnik M, Zorec M, Chen SJ, Goh KM, Yahya A, Md Salleh M, Ibrahim Z, Tokiman L, McQueen-Mason SJ, Bruce NC, Chong CS (2020) Robertkochia solimangrovi sp. nov., isolated from mangrove soil, and emended description of the genus Robertkochia. Int J Syst Evol Microbiol 70(3):1769-1776. https://doi.org/10.1099/ijsem.0.003970

  19. Baweja M, Nain L, Kawarabayasi Y, Shukla P (2016) Current technological improvements in enzymes toward their biotechnological applications. Front Microbiol 7(965). https://doi.org/10.3389/fmicb.2016.00965

  20. Loman NJ, Pallen MJ (2015) Twenty years of bacterial genome sequencing. Nat Rev Microbiol 13(12):787–794. https://doi.org/10.1038/nrmicro3565

    Article  CAS  PubMed  Google Scholar 

  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D, Palaniappan K, Szeto E, Pillay M, Chen I-MA, Pati A, Nielsen T, Markowitz VM, Kyrpides NC (2015) The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand Genomic Sci 10(1):86. https://doi.org/10.1186/s40793-015-0077-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12:444–444. https://doi.org/10.1186/1471-2164-12-444

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35 (Web Server issue):W182-W185. https://doi.org/10.1093/nar/gkm321

  27. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420–423. https://doi.org/10.1038/s41587-019-0036-z

    Article  CAS  PubMed  Google Scholar 

  28. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7(1):539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong S-Y, Finn RD (2018) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(D1):D351–D360. https://doi.org/10.1093/nar/gky1100

    Article  CAS  PubMed Central  Google Scholar 

  30. Auld DS (2013) Zinc-Binding Sites in Proteins. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of Metalloproteins. Springer New York, New York, pp 2554–2559. https://doi.org/10.1007/978-1-4614-1533-6_182

    Chapter  Google Scholar 

  31. Tabatabai M, Bremner J (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1(4):301–307

    Article  CAS  Google Scholar 

  32. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  33. Bihani SC, Das A, Nilgiriwala KS, Prashar V, Pirocchi M, Apte SK, Ferrer J-L, Hosur MV (2011) X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases. PLoS One 6(7):e22767. https://doi.org/10.1371/journal.pone.0022767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pérez-Castiñeira JR, López-Marqués RL, Villalba JM, Losada M, Serrano A (2002) Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases. Proc Natl Acad Sci 99(25):15914–15919

    Article  PubMed  PubMed Central  Google Scholar 

  35. Behera BC, Yadav H, Singh SK, Sethi BK, Mishra RR, Kumari S, Thatoi H (2017) Alkaline phosphatase activity of a phosphate solubilizing Alcaligenes faecalis, isolated from mangrove soil. Biotechnol Res Innov 1(1):101–111

  36. Behera B, Yadav H, Singh S, Mishra R, Sethi B, Dutta S, Thatoi H (2017) Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J Genet Eng Biotechnol 15(1):169–178

Download references

Acknowledgements

Chun Shiong Chong appreciates Fundamental Research Grant Scheme (FRGS 2019-1, project number: 5F196) from Ministry of Education Malaysia, Industry-International Incentive Grant (project number: 02M34) and Research University Grant (GUP 2018, project number: 20H43) from Universiti Teknologi Malaysia. Ming Quan Lam is grateful for a Post-Doctoral Fellowship Scheme from Universiti Teknologi Malaysia, with the project title: “Harnessing Sustainable Development Opportunities from Oil Palm Empty Fruit Bunch as Food for Black Soldier Fly Larvae”. Ming Quan Lam acknowledges Khazanah Watan Postgraduate (PhD) scholarship (scholar ID: 40852) from Yayasan Khazanah. Sye Jinn Chen is grateful to Zamalah Scholarship from Universiti Teknologi Malaysia.

Funding

This work was financially sponsored by Fundamental Research Grant Scheme (FRGS 2019-1) from Ministry of Education Malaysia, Research University Grant (GUP 2018) and Industry-International Incentive Grant from Universiti Teknologi Malaysia under project number 5F196, 20H43 and 02M34, respectively, which was granted to Chun Shiong Chong. This study was also supported by Universiti Teknologi Malaysia under the Post-Doctoral Fellowship Scheme for the Project: “Harnessing Sustainable Development Opportunities from Oil Palm Empty Fruit Bunch as Food for Black Soldier Fly Larvae”, which granted to Ming Quan Lam.

Author information

Authors and Affiliations

Authors

Contributions

Ming Quan Lam designed and performed the experiment, analyzed the data, and wrote the manuscript. Sye Jinn Chen assisted in performing the experiment and provided the expertise. Kian Mau Goh, Adibah Yahya, Fazilah Abd Manan, and Mohd Shahir Shamsir provided the expertise. Chun Shiong Chong conceived the presented idea, designed the experiment, and provided the expertise. All authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to Chun Shiong Chong.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Additional information

Responsible Editor: Rodrigo Galhardo.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, M.Q., Chen, S.J., Goh, K.M. et al. Genome sequence of an uncharted halophilic bacterium Robertkochia marina with deciphering its phosphate-solubilizing ability. Braz J Microbiol 52, 251–256 (2021). https://doi.org/10.1007/s42770-020-00401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00401-2

Keywords

Navigation