Skip to main content
Log in

Steady-state antiplane crack considering the flexoelectrics effect: surface waves and flexoelectric metamaterials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The antiplane dynamic flexoelectric problem is stated as a dielectric solid that incorporates gradients of electric polarization and flexoelectricity due to strain gradients. The work examines dielectric materials without piezoelectric coupling or nonlinear ferroelectric switching and considers the inverse flexoelectric effect. It is shown that the coupling of the mechanical with the electrical problem can be condensed in a single mechanical problem that falls in the area of dynamic couple stress elasticity. Moreover, static and steady state dynamic antiplane problems of flexoelectric and couple stress elastic materials can be modeled as anisotropic plates with a non-equal biaxial pre-stress. This analogy was materialized in a finite element code. In this work, we solved the steady-state problem of a semi-infinite antiplane crack located in the middle of an infinite flexoelectric material, with its crack-tip moving with constant velocity. The particular type of loading investigated serves to relate the present solutions with known results from classic elastodynamics. We investigated the influence of various parameters such as the shear wave velocity and two naturally emerging microstructural and micro-inertia lengths. In the context of flexoelectricity, the two lengths are due to the interplay of the elastic and the flexoelectric parameters. Furthermore, we investigated the subsonic and the supersonic steady state crack rupture and showed that the Mach cones depend on the microstructural as well as the micro-inertial lengths. An important finding of this work is the existence of surface waves of Bleustein–Gulyaev type that do not appear in classic elastodynamics, but have been found in piezoelectric materials. The case of dielectric metamaterials with negative electric susceptibility is examined for the first time. The results can be useful for other dispersive materials, provided we identify the pertinent microstructural and micro-inertial lengths in accord with the behavior of the material at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. ABAQUS, version 6.12: User’s Manual. Hibbit, Karlsson and Sorensen Inc., Pawtucket (2012)

  2. Abdollahi, A., Peco, C., Millan, D., Arroyo, M., Catalan, G., Arias, I.: Fracture toughening and toughness asymmetry induced by flexoelectricity. Phys. Rev. B Condens. Matter Mater. Phys. 92, 094101 (2015)

    Google Scholar 

  3. Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  4. Aki, K., Richards, P.G.: Qualitative Seismology, vol. II. W.H. Freeman, New York (1980)

    Google Scholar 

  5. Arakawa, M., Maeno, N., Higa, M.: Direct observations of growing cracks in ice. J. Geophys. Res. 100(E4), 7539–7547 (1995)

    Google Scholar 

  6. Askar, A., Lee, P.C.Y., Cakmak, A.S.: Lattice-dynamics approach to the theory of elastic dielectrics with polarization gradient. Phys. Rev. B 1, 3525–3537 (1970)

    Google Scholar 

  7. Baer, R.L., Flory, C.A., Tom-Moy, M., Solomon, D.S.: STW chemical sensors. In: IEEE Ultrasonics Symposium, pp. 293–298 (1992)

  8. Barrett, J.H.: Dielectric constant in perovskite type crystals. Phys. Rev. 86, 118–120 (1952)

    Google Scholar 

  9. Bleustein, J.L.: A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–413 (1968)

    Google Scholar 

  10. Brillouin, L.: Wave Propagation in Periodic Structures. McGraw-Hill, New York (1946)

    MATH  Google Scholar 

  11. Broberg, K.B.: Cracks and Fracture. Academic Press, San Diego (1999)

    Google Scholar 

  12. Broberg, K.B.: The near-tip field at high crack velocities. Int. J. Fract. 39, 1–13 (1989)

    Google Scholar 

  13. Chen, Y., Lee, J.D., Eskandarian, A.: Examining the physical foundation of continuum theories from the view point of phonon dispersion relation. Int. J. Eng. Sci. 41, 61–83 (2003)

    MATH  Google Scholar 

  14. Courant, R., Lax, A.: Remarks on Couchy’s problem for hyperbolic partial differential equations with constant coefficients in several independent variables. Commun. Pure Appl. Math. VIII, 497–502 (1955)

    MATH  Google Scholar 

  15. Cordero-Edwards, K., Kianirad, H., Canalias, C., Sort, J., Catalan, G.: Flexoelectric fracture-ratchet effect in ferroelectrics. Phys. Rev. Lett. 122, 135502 (2019)

    Google Scholar 

  16. Craggs, J.W.: On the propagation of a crack in an elastic-brittle material. J. Mech. Phys. Solids 8, 66–75 (1960)

    MathSciNet  MATH  Google Scholar 

  17. Cross, L.E.: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)

    Google Scholar 

  18. Curran, D.R., Shockey, D.A., Winkler, S.: Crack propagation at supersonic velocities II. Theoretical model. Int. J. Fract. Mech. 6, 271–278 (1970)

    Google Scholar 

  19. Dick, B.G., Overhouser, A.W.: Theory of dielectric constants of alkali halide crystals. Phys. Rev. 112, 90–103 (1958)

    Google Scholar 

  20. Drafts, B.: Acoustic wave technology sensors. IEEE Trans. Microwave Theory Tech. 49, 795–802 (2001)

    Google Scholar 

  21. Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Kalinin, S.V.: Lost surface waves in nonpiezoelectric solids. Phys. Rev. B 96, 045411 (2017)

    Google Scholar 

  22. Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J.F., Koschny, T., Soukoulis, C.M.: Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95(20), 203901 (2005)

    Google Scholar 

  23. Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  24. Gavardinas, I.D., Giannakopoulos, A.E., Zisis, Th: A von Karman plate analogue for solving antiplane problems in couple stress and dipolar gradient elasticity. Int. J. Solids Struct. 148–149, 169–180 (2018)

    Google Scholar 

  25. Georgiadis, H.G.: The mode III crack problem in microstructured solids governed by dipolar gradient elasticity: static and dynamic analysis. J. Appl. Mech. 70, 517–530 (2003)

    MATH  Google Scholar 

  26. Giannakopoulos, A.E., Zisis, Th: Uniformly moving screw dislocation in flexoelectric materials. Eur. J. Mech. A Solids 78–149, 103843 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Gorishnyy, T., Ullal, C.K., Maldovan, M., Fytas, G., Thomas, E.L.: Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005)

    Google Scholar 

  28. Gulyaev, YuV: Electroacoustic surface waves in solids. Zh. Eksp. Teor. Fiz. Pis’ma Red. 9, 63–65 (1969)

    Google Scholar 

  29. Guozden, T.M., Jagla, E.A.: Supersonic crack propagation in a class of lattice models of mode III brittle fracture. Phys. Rev. Lett. 95, 2243022 (2005)

    Google Scholar 

  30. Guozden, T.M., Jagla, E.A., Marden, M.: Supersonic cracks in lattice models. Int. J. Fract. 162, 107–125 (2010)

    MATH  Google Scholar 

  31. Huller, A.: Soft phonon dispersion in \(\text{ BaTiO}_{\rm 3}\) Z. Physik 220, 145–158 (1969)

    Google Scholar 

  32. Ida, Y.: Cohesive force across the tip of a longitudinal shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972)

    Google Scholar 

  33. Ida, Y., Aki, K.: Seismic source time function of propagating longitudinal-shear cracks. J. Geophys. Res. 77, 2034–2044 (1972)

    Google Scholar 

  34. Indebom, V.L., Loginov, E.B., Osipov, M.A.: Flexoelectric effect and crystal structure. Krystallografiya 26(6), 157–1162 (1981)

    Google Scholar 

  35. Jackson, J.D.: Classical Electrodynamics. Willey, New York (1975)

    MATH  Google Scholar 

  36. Jakata, K., Every, A.G.: Determination of the dispersive elastic constants of the cubic crystals Ge, Si, GaAs and InSb. Phys. Rev. B 77, 174301 (2008)

    Google Scholar 

  37. Kildishev, A.V., Cai, W., Chettiar, U.K., Yuan, H.K., Sarychev, A.K., Drachev, V.P., Shalaev, V.M.: Negative refractive index in optics of metal–dielectric composites. JOSA B 23(3), 423–433 (2006)

    Google Scholar 

  38. Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5(10), 2069–2070 (1964)

    Google Scholar 

  39. Koo, J.H.: Negative electric susceptibility and magnetism from translational invariance and rotational invariance. J. Magn. Magn. Mater. 375, 106–110 (2015)

    Google Scholar 

  40. Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S.: Superprism phenomena in photonic crystals. Phys. Rev. B 58(16), R10096 (1998)

    Google Scholar 

  41. Krichen, S., Sharma, P.: Flexoelectricity: a perspective on an unusual electromechanical coupling. J. Appl. Mech. 83, 030801 (2016)

    Google Scholar 

  42. Kvasov, A., Tagantsev, A.K.: Dynamic flexoelectric effects in perovskites from first-principles calculations. Phys. Rev. B 92, 054104 (2015)

    Google Scholar 

  43. Lin, B., Mear, M.E., Ravi-Chandar, K.: Criterion for initiation of cracks under mixed-mode I + III loading. Int. J. Fract 165(2), 175–188 (2010)

    MATH  Google Scholar 

  44. Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., Giessen, H.: Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7(1), 31–37 (2008)

    Google Scholar 

  45. Lu, M.H., Feng, L., Chen, Y.F.: Phononic crystals and acoustic metamaterials. Mater. Today 12(12), 34–42 (2009)

    Google Scholar 

  46. Luo, C., Ibanescu, M., Johnson, S.G., Joannopoulos, J.D.: Cerenkov radiation in photonic crystals. Science 299(5605), 368–371 (2003)

    Google Scholar 

  47. Maerfeld, C., Gires, F., Tournois, P.: Bleustein–Gulyaev surface wave amplification in CdS. Appl. Phys. Lett. 18, 269–272 (1971)

    Google Scholar 

  48. Majorkowska-Knap, K., Lenz, J.: Piezoelectric Love waves in non-classical elastic dielectrics. Int. J. Eng. Sci. 27, 879–893 (1989)

    MATH  Google Scholar 

  49. Mao, S., Purohit, P.K.: Defects in fleoelectric solids. J. Mech. Phys. Solids 84, 95–115 (2015)

    MathSciNet  Google Scholar 

  50. Mao, S., Purohit, P.K., Aravas, N.: Mixed finite-element formulations in piezoelectricity and flexoelectricity. Proc. R. Soc. A 472, 20150879 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in non-piezoelectric materials due to nanoscale nonlocal size effects: Green’s functions and embedded inclusions. Phys. Rev. B74.014110 (2006); Erratum: Piezoelectric thin-film super-lattices without using piezoelectric materials [J. Appl. Phys. 108, 024304 (2010)] N. D. Sharma, C. Landis, and P. Sharma

  52. Maraganti, R., Sharma, P.: Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98, 195504 (2007)

    Google Scholar 

  53. Maraganti, R., Sharma, P.: Atomistic determination of flexoelectric properties in crystalline dielectrics. Phys. Rev. B 80, 054109 (2009)

    Google Scholar 

  54. Marden, M., Liu, X.: Instability in lattice fracture. Phys. Rev. Lett. 71, 2417–2420 (1993)

    Google Scholar 

  55. Mashkevich, V.S., Tolpygo, K.B.: Electrical, optical and elastic properties of diamond type crystals. I. Sov. Phys. JETP 5, 435–439 (1957)

    Google Scholar 

  56. McClintock, F.A., Sukhatme, S.P.: Travelling cracks in elastic materials under longitudinal shear. J. Mech. Phys. Solids 8, 187–193 (1960)

    MathSciNet  MATH  Google Scholar 

  57. Mindlin, R.D.: Polarization gradient in elastic dielectric. Int. J. Solids Struct. 4, 637–642 (1968)

    MATH  Google Scholar 

  58. Mindlin, R.D.: Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Int. J. Solids Struct. 5, 1197–1208 (1969)

    Google Scholar 

  59. Mindlin, R.D., Triesten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    MathSciNet  MATH  Google Scholar 

  60. Mishuris, G., Piccolroaz, A., Radi, E.: Steady-state propagation of a mode III crack in couple stress elastic materials. Int. J. Eng. Sci. 61, 112–128 (2012)

    MathSciNet  MATH  Google Scholar 

  61. Morini, L., Piccolroaz, A., Mishuris, G., Radi, E.: On fracture criteria for dynamic crack propagation in elastic materials with couple stresses. Int. J. Eng. Sci. 71, 45–61 (2013)

    MathSciNet  MATH  Google Scholar 

  62. Morini, L., Piccolroaz, A., Mishuris, G.: Remarks on the energy release rate for an antiplane moving crack in couple stress elasticity. Int. J. Solids Struct. 51, 3087–3100 (2014)

    Google Scholar 

  63. Padilla, W.J., Basov, D.N., Smith, D.R.: Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006)

    Google Scholar 

  64. Padilla, W.J., Taylor, A.J., Highstrete, C., Lee, M., Averitt, R.D.: Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96(10), 107401 (2006)

    Google Scholar 

  65. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999)

    Google Scholar 

  66. Pham, K.H., Ravi-Chandar, K.: Further examination of the criterion for crack initiation under mixed-mode I + III loading. Int. J. Fract. 189(2), 121–138 (2014)

    Google Scholar 

  67. Polyzos, D., Fotiadis, D.I.: Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470–480 (2012)

    Google Scholar 

  68. Pouget, J., Askar, A., Maugin, G.A.: Lattice model for elastic ferroelectric crystal: continuum approximation. Phys. Rev. B 33, 6320–6325 (1986)

    Google Scholar 

  69. Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  70. Sahin, E., Dost, S.: A strain-gradients theory of elastic dielectrics with spatial dispersion. Int. J. Eng. Sci. 26, 1231–1245 (1988)

    Google Scholar 

  71. Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics 1(1), 41–48 (2007)

    MathSciNet  Google Scholar 

  72. Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S.: Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 78(4), 489–491 (2001)

    Google Scholar 

  73. Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)

    MathSciNet  MATH  Google Scholar 

  74. Shirane, G., Nathans, R., Minkiewicz, V.J.: Temperature dependence of the soft ferroelectric mode in \(\text{ KTaO}_{\rm 3}\). Phys. Rev. 157, 157–399 (1960)

    Google Scholar 

  75. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)

    Google Scholar 

  76. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Google Scholar 

  77. Stengel, M.: Unified ab initio formulation of flexolectricity and strain-gradient effects. Phys. Rev. B 93, 245107 (2016)

    Google Scholar 

  78. Stroh, A.N.: Steady state problems in anisotropic elasticity. J. Math. Phys. 41, 77–103 (1963)

    MathSciNet  MATH  Google Scholar 

  79. Suzuki, T., Sekiya, M., Sato, T., Takebayashi, Y.: Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband. Opt. Express 26(7), 8314–8324 (2018)

    Google Scholar 

  80. Tagantsev, A.K.: Electric polarization in crystals and its response to thermal and elastic perturbations. Phase Transit. 35, 119–203 (1991)

    Google Scholar 

  81. Vaks, V.G.: Phase transitions of the displacement type in ferroelectrics. Sov. Phys. JETP 27, 486–494 (1968)

    Google Scholar 

  82. Vardoulakis, I., Georgiadis, H.G.: SH surface waves in a homogeneous gradient-elastic half-space with surface energy. J. Elast. 47, 147–165 (1997)

    MathSciNet  MATH  Google Scholar 

  83. Vellekoop, M.J.: Acoustic wave sensor and their technology. Ultrasonics 36, 7–14 (1998)

    Google Scholar 

  84. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. 10, 509–514 (1968)

    Google Scholar 

  85. Wang, B., Gu, Y., Zhang, S., Chen, L.-Q.: Flexoelectricity in solids: progress, challenges and perspectives. Prog. Mater. Sci. 106, 100570 (2019)

    Google Scholar 

  86. Weber, W.: New bond-charge model for the lattice dynamics of diamond-type semiconductors. Phys. Rev. Lett. 33, 371–374 (1974)

    Google Scholar 

  87. Weber, W.: Adiabatic bond charge model for the phonons in diamond, Si, Ge, and \(\alpha \)-Sn. Phys. Rev. B 15, 4789–4803 (1977)

    Google Scholar 

  88. White, R.M.: Surface elastic waves. Proc. IEEE 58, 1238–1276 (1970)

    Google Scholar 

  89. Winkler, S., Shokley, D.A., Curran, D.R.: Crack propagation at supersonic velocities. I Experiments. Int. Fract. Mech. 6, 151–158 (1970)

    Google Scholar 

  90. Wolter, J.: Controllable parametric amplification of Bluestain–Gulyaev plate waves in Si-PXE 5 structures. Phys. Lett. 42A, 115–116 (1972)

    Google Scholar 

  91. Wong, Z.J., Wang, Y., O’Brien, K., Rho, J., Yin, X., Zhang, S., Fang, N., Yen, T.J., Zhang, X.: Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. J. Opt. 19(8), 084007 (2017)

    Google Scholar 

  92. Xia, K., Rosakis, A.J., Kanamon, H.: Laboratory earth quakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004)

    Google Scholar 

  93. Yamada, Y., Shirane, G.: Newton scattering and nature of the soft optical phonon in \(\text{ SrTiO}_{\rm 3}\). J. Phys. Soc. Jpn. 26, 396–403 (1969)

    Google Scholar 

  94. Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology 24, 43001 (2013)

    Google Scholar 

  95. Zhao, X., Soh, A.K.K.: The effect of flexoelectricity on domain switching in the vicinity of a crack in ferroelectrics. J. Eur. Ceram. Soc. 38, 141–1348 (2018)

    Google Scholar 

  96. Zhou, J., Zhang, L., Tuttle, G., Koschny, T., Soukoulis, C.M.: Negative index materials using simple short wire pairs. Phys. Rev. B 73(4), 041101 (2006)

    Google Scholar 

  97. Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Assist. Prof. Y. Kominis for pointing out the possibility of negative dielectric susceptibility and the related class of dielectric metamaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanasis Zisis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order to explain the analogy between the antiplane steady state couple stress problem with the prestretched orthotropic plate problem, we will provide a short account of the plate problem. We will also give the correspondence of the plate’s parameters with the parameters of the couple stress problem, connecting them with the finite element procedure that solves the plate problem. The starting point is that a plate with Kirchhoff-type kinematic assumption ends up with one basic unknown, the out-of-plane displacement w, which is also the prime unknown for the antiplane couple-stress problem. The space of solution is a plane described by the Cartesian coordinates (\(\xi , \eta )\) attached to the crack tip and is the same in both plate and antiplane cases. Due to the constant tip velocity that carries also the loading with the same speed, the problem in both cases appears as “static.” Following [26] the orthotropic bending stiffness parameters of the plate are:

$$\begin{aligned} D_{\xi } =\frac{E_{\xi } h^{3}}{12(1-\nu _{\xi } \nu _{\eta } )},\,\,\,\,\,\,\,\,\,\,\,D_{\eta } =\frac{E_{\eta } h^{3}}{12(1-\nu _{\xi } \nu _{\eta } )},\,\,\,\,\,\,\,\,\,\,\,\,2D_{\xi \eta } =\frac{2Gh^{3}}{12} \end{aligned}$$
(A.1)

where \(E_{\xi }, E_{\eta }, \nu _{\xi }, \nu _{\eta } \) are the elastic and Poisson’s ratio constants in the \(\xi \) and \(\eta \) directions, G is the in-plane shear modulus, and h is the plate’s (constant) thickness. If we apply to the plate homogeneous prestressing \(N_{\xi } \) and \(N_{\eta } \) as line forces in the \(\xi \) and \(\eta \) directions, we obtain the fourth-order equilibrium equation in terms of w:

$$\begin{aligned} D_{\xi } \frac{\partial ^{4}w}{\partial \xi ^{4}}+\left( {D_{\xi } \nu _{\eta } +D_{\eta } \nu _{\xi } +4D_{\xi \eta } } \right) \frac{\partial ^{4}w}{\partial \xi ^{2}\partial \eta ^{2}}+D_{\eta } \frac{\partial ^{4}w}{\partial \eta ^{4}}=q_\mathrm{plate} +N_{\xi } \frac{\partial ^{2}w}{\partial \xi ^{2}}+N_{\eta } \frac{\partial ^{2}w}{\partial \eta ^{2}} \end{aligned}$$
(A.2)

where \(q_\mathrm{plate} \) is the distributed surface load of the plate. Note that all the parameters entering the plate problem can be selected by the finite element code which will be asked to solve Eq. (A.2) and obtain \(w\,(\xi ,\eta )\) numerically.

To complete the plate problem, we have to introduce the boundary conditions. For simplicity, we will state the boundary conditions along the \(\xi \) and \(\eta \) directions. More general boundary conditions can be found in the work of Giannakopoulos and Zisis [26]. Two types of boundary conditions are involved in the plate problem, just as in the antiplane couple stress elasticity problem: the bending moments \(M_{\xi }, M_{\eta }, M_{\xi \eta } \) and the shear forces \(Q_{\xi }, Q_{\eta } \) (per unit length):

$$\begin{aligned}&\begin{array}{l} M_{\xi } =-D_{\xi } \left( {\frac{\partial ^{2}w}{\partial \xi ^{2}}+\nu _{\xi } \frac{\partial ^{2}w}{\partial \eta ^{2}}} \right) \\ \\ M_{\eta } =-D_{\eta } \left( {\frac{\partial ^{2}w}{\partial \eta ^{2}}+\nu _{\eta } \frac{\partial ^{2}w}{\partial \xi ^{2}}} \right) \\ \\ M_{\xi \eta } =-M_{\eta \xi } =-2D_{\xi \eta } \frac{\partial ^{2}w}{\partial \xi \,\partial \eta } \\ \end{array} \end{aligned}$$
(A.3)
$$\begin{aligned}&\begin{array}{l} Q_{\xi } =-\frac{\partial }{\partial \xi }\left( {D_{\xi } \frac{\partial ^{2}w}{\partial \xi ^{2}}+(D_{\xi } \nu _{\eta } +2D_{\xi \eta } )\frac{\partial ^{2}w}{\partial \eta ^{2}}} \right) +N_{\xi } \frac{\partial w}{\partial \xi } \\ \\ Q_{\eta } =-\frac{\partial }{\partial \eta }\left( {(D_{\eta } \nu _{\xi } +2D_{\xi \eta } )\frac{\partial ^{2}w}{\partial \xi ^{2}}+D_{\eta } \frac{\partial ^{2}w}{\partial \eta ^{2}}} \right) +N_{\eta } \frac{\partial w}{\partial \eta } \\ \end{array} \end{aligned}$$
(A.4)

To complete the analogy, we compare the above plate equations with the steady-state, antiplane couple stress equations assuming that the antiplane displacement and the out of plane plate displacement are the same. Indeed, comparing (A.2) with (5.3), the two equations become identical provided that the following conditions hold:

$$\begin{aligned} \frac{N_{\xi } }{N_{\eta } }= & {} 1-\frac{V^{2}}{c_\mathrm{s}^{2} } \end{aligned}$$
(A.5)
$$\begin{aligned} \frac{q_\mathrm{plate} }{N_{\eta } }= & {} \frac{X_{z} }{\mu } \end{aligned}$$
(A.6)
$$\begin{aligned} \frac{D_{\xi } }{N_{\eta } }= & {} \frac{\ell ^{2}}{2}\left( {1-\frac{V^{2}H^{2}}{6\ell c_\mathrm{s}^{2} }} \right) \end{aligned}$$
(A.7)
$$\begin{aligned} \frac{D_{\eta } }{N_{\eta } }= & {} \frac{\ell ^{2}}{2} \end{aligned}$$
(A.8)
$$\begin{aligned} \frac{D_{\xi } \nu _{\eta } +D_{\eta } \nu _{\xi } +4D_{\xi \eta } }{N_{\eta } }= & {} \frac{\ell ^{2}}{2}\left( {2-\frac{V^{2}H^{2}}{6\ell ^{2}c_\mathrm{s}^{2} }} \right) \end{aligned}$$
(A.9)

The meaning of the above equations is the following: the left-hand side are plate parameters and the right-hand side of these equations are couple stress parameters. Equation (A.5) enters the normalized steady state velocity \(V/c_\mathrm{s} \) through the ratio of the pre-stress line loads \(N_{\xi } /N_{\eta } \). Equation (A.6) enters the normalized body force \(X_{z} /\mu \) through the normalized plate surface load \(q_\mathrm{plate} /N_{\eta } \) which interestingly suggests an inverse length. Accordingly, equation (A.8) enters the microstructural length \(\ell /\sqrt{2} \) though the ratio \(D_{\eta } /N_{\eta } \). Equation (A.7) enters the micro-inertial length \(H/\sqrt{12} \) through the ratio \(D_{\xi } /N_{\eta } \) (that is plate’s orthotropy dictates the micro-inertial length). Equation (A.9) serves as a consistency equation and essentially fixes the value of \(D_{\xi \eta } /N_{\eta } \). The Poisson’s ratio \(\nu _{\xi } \) and \(\nu _{\eta } \) will have to be selected in accord to the moment type of boundary conditions (A.3). For the problem under investigation, we can select:

$$\begin{aligned} \nu _{\xi }= & {} \nu _{\eta } =0 \end{aligned}$$
(A.10)
$$\begin{aligned} \frac{4D_{\xi \eta } }{N_{\eta } }= & {} \frac{\ell ^{2}}{2}\left( {2-\frac{V^{2}H^{2}}{6\ell ^{2}c_\mathrm{s}^{2} }} \right) \end{aligned}$$
(A.11)

Then, Eq. (5.4) compared to (A.3b) gives \(w=0\), in front of the crack tip and \(M_{\eta } =0\) at the crack surface.

Equation (5.5) compared to (A.4b) suggests that:

$$\begin{aligned} \frac{Q_{\eta } }{N_{\eta } }=-\frac{t_{3} }{\mu } \end{aligned}$$
(A.12)

This last equation enters the normalized traction \(t_{3} /\mu \) of the couple stress problem with the normalized shear load \(Q_{\eta } /N_{\eta } \) of the plate problem at the crack surface. Finally, let us examine the case of \(\nu _{\xi } \ne 0\) and \(\nu _{\eta } \ne 0\). This will lead to a plate boundary condition \(\frac{\partial ^{2}w}{\partial \eta ^{2}}+\nu _{\eta } \frac{\partial ^{2}w}{\partial \xi ^{2}}=0\) which would be different that the couple stress boundary condition \(\frac{\partial ^{2}w}{\partial \eta ^{2}}=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannakopoulos, A.E., Zisis, T. Steady-state antiplane crack considering the flexoelectrics effect: surface waves and flexoelectric metamaterials. Arch Appl Mech 91, 713–738 (2021). https://doi.org/10.1007/s00419-020-01815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01815-y

Keywords

Navigation