Skip to main content

Advertisement

Log in

Spatially resolved absolute quantitation in thin tissue by mass spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mass spectrometry (MS) has become the de facto tool for routine quantitative analysis of biomolecules. MS is increasingly being used to reveal the spatial distribution of proteins, metabolites, and pharmaceuticals in tissue and interest in this area has led to a number of novel spatially resolved MS technologies. Most spatially resolved MS measurements are qualitative in nature due to a myriad of potential biases, such as sample heterogeneity, sampling artifacts, and ionization effects. As applications of spatially resolved MS in the pharmacological and clinical fields increase, demand has become high for quantitative MS imaging and profiling data. As a result, several varied technologies now exist that provide differing levels of spatial and quantitative information. This review provides an overview of MS profiling and imaging technologies that have demonstrated quantitative analysis from tissue. Focus is given on the fundamental processes affecting quantitative analysis in an array of MS imaging and profiling technologies and methods to address these biases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ackermann BL, Hale JE, Duffin KL. The role of mass spectrometry in biomarker discovery and measurement. Curr Drug Metab. 2006;7(5):525–39.

    CAS  PubMed  Google Scholar 

  2. Zhang Y, Liu X. Machine learning techniques for mass spectrometry imaging data analysis andapplications. Bioanalysis. 2018;10(8):519–22.

  3. Stauber J. Quantitation by MS imaging: needs and challenges in pharmaceuticals. Bioanalysis. 2012;4(17):2095–8.

    CAS  PubMed  Google Scholar 

  4. Cobice DF, Goodwin RJA, Andren PE, Nilsson A, Mackay CL, Andrew R. Future technology insight: mass spectrometry imaging as a tool in drug research and development. Brit J Pharmacol. 2015;172(13):3266–83.

    CAS  Google Scholar 

  5. Davoli E, Zucchetti M, Matteo C, Ubezio P, D’Incalci M, Morosi L. The space dimension at the micro level: mass spectrometry imaging of drugs in tissues. Mass Spectrom Rev 2020. https://doi.org/10.1002/mas.21633.

  6. Ellis SR, Bruinen AL, Heeren RMA. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal Bioanal Chem. 2014;406(5):1275–89.

    CAS  PubMed  Google Scholar 

  7. Laskin J, Lanekoff I. Ambient mass spectrometry imaging using direct liquid extraction techniques. Anal Chem. 2016;88(1):52–73.

    CAS  PubMed  Google Scholar 

  8. Piehowski PD, Zhu Y, Bramer LM, Stratton KG, Zhao R, Orton DJ et al. Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat Commun. 2020; 11, 8. https://doi.org/10.1038/s41467-019-13858-z.

  9. Oya M, Suzuki H, Anas ARJ, Oishi K, Ono K, Yamaguchi S, et al. LC-MS/MS imaging with thermal film-based laser microdissection. Anal Bioanal Chem. 2018;410(2):491–9.

    CAS  PubMed  Google Scholar 

  10. Griffiths RL, Hughes JW, Abbatiello SE, Belford MW, Styles IB, Cooper HJ. Comprehensive LESA mass spectrometry imaging of intact proteins by integration of cylindrical FAIMS. Anal Chem. 2020;92(4):2885–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Griffiths RL, Simmonds AL, Swales JG, Goodwin RJA, Cooper HJ. LESA MS imaging of heat-preserved and frozen tissue: benefits of multistep static FAIMS. Anal Chem. 2018;90(22):13306–14.

    CAS  PubMed  Google Scholar 

  12. Wu Q, Huang ZH, Wang Y, Zhang ZM, Lu HM. Absolute quantitative imaging of sphingolipids in brain tissue by exhaustive liquid microjunction surface sampling-liquid chromatography-mass spectrometry. J Chromatogr A. 2020;1609:460436.

    CAS  PubMed  Google Scholar 

  13. Kertesz V, Calligaris D, Feldman DR, Changelian A, Laws ER, Santagata S, et al. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC-ESI-MS-MS. Anal Bioanal Chem. 2015;407(20):5989–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xue YJ, Gao H, Ji QC, Lam Z, Fang XP, Lin ZP, et al. Bioanalysis of drug in tissue: current status and challenges. Bioanalysis. 2012;4(21):2637–53.

    CAS  PubMed  Google Scholar 

  15. Masucci JA, Mahan AD, Kwasnoski JD, Caldwell GW. A novel method for determination of drug distribution in rat brain tissue sections by LC/MS/MS: functional tissue microanalysis. Curr Top Med Chem. 2012;12(11):1243–9.

    CAS  PubMed  Google Scholar 

  16. Cahill JF, Kertesz V, Weiskittel TM, Vavrek M, Freddo C, Van Berkel GJ. Online, absolute quantitation of propranolol from spatially distinct 20-and 40-μm dissections of brain, liver, and kidney thin tissue sections by laser microdissection-liquid vortex capture-mass spectrometry. Anal Chem. 2016;88(11):6026–34.

    CAS  PubMed  Google Scholar 

  17. Fang HF, Pajski ML, Ross AE, Venton BJ. Quantitation of dopamine, serotonin and adenosine content in a tissue punch from a brain slice using capillary electrophoresis with fast-scan cyclic voltammetry detection. Anal Methods-UK. 2013;5(11):2704–11.

    CAS  Google Scholar 

  18. Fang JJ, Schneider B. Laser microdissection: a sample preparation technique for plant micrometabolic profiling. Phytochem Analysis. 2014;25(4):307–13.

    CAS  Google Scholar 

  19. Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S. Laser capture microdissection: big data from small samples. Histol Histopathol. 2015;30(11):1255–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Goodwin RJA, Scullion P, MacIntyre L, Watson DG, Pitt AR. Use of a solvent-free dry matrix coating for quantitative matrix-assisted laser desorption ionization imaging of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate in rat brain and quantitative analysis of the drug from laser microdissected tissue regions. Anal Chem. 2010;82(9):3868–73.

    CAS  PubMed  Google Scholar 

  21. Cahill JF, Kertesz V. Automated optically guided system for chemical analysis of single plant and algae cells using laser microdissection/liquid vortex capture/mass spectrometry. Front Plant Sci. 2018;9:1211.

    PubMed  PubMed Central  Google Scholar 

  22. Cahill JF, Kertesz V, Van Berkel GJ. Laser dissection sampling modes for direct mass spectral analysis. Rapid Commun Mass Spectrom. 2016;30(5):611–9.

    CAS  PubMed  Google Scholar 

  23. Lanekoff I, Stevens SL, Stenzel-Poore MP, Laskin J. Matrix effects in biological mass spectrometry imaging: identification and compensation. Analyst. 2014;139(14):3528–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kertesz V, Vavrek M, Freddo C, Van Berkel GJ. Spatial profiling of stapled alpha-helical peptide ATSP-7041 in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS. Int J Mass Spectrom. 2019;437:17–22.

    CAS  Google Scholar 

  25. Van Berkel GJ, Sanchez AD, Quirke JME. Thin-layer chromatography and electrospray mass spectrometry coupled using a surface sampling probe. Anal Chem. 2002;74(24):6216–23.

    PubMed  Google Scholar 

  26. Van Berkel GJ, Kertesz V. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins. Rapid Commun Mass Spectrom. 2013;27(12):1329–34.

    PubMed  Google Scholar 

  27. Kertesz V, Van Berkel GJ. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J Mass Spectrom. 2010;45(3):252–60.

    CAS  PubMed  Google Scholar 

  28. Schadt S, Kallbach S, Almeida R, Sandel J. Investigation of figopitant and its metabolites in rat tissue by combining whole-body autoradiography with liquid extraction surface analysis mass spectrometry. Drug Metab Dispos. 2012;40(3):419–25.

    CAS  PubMed  Google Scholar 

  29. Eikel D, Vavrek M, Smith S, Bason C, Yeh S, Korfmacher WA, et al. Liquid extraction surface analysis mass spectrometry (LESA-MS) as a novel profiling tool for drug distribution and metabolism analysis: the terfenadine example. Rapid Commun Mass Spectrom. 2011;25(23):3587–96.

    CAS  PubMed  Google Scholar 

  30. Parson WB, Koeniger SL, Johnson RW, Erickson J, Tian Y, Stedman C, et al. Analysis of chloroquine and metabolites directly from whole-body animal tissue sections by liquid extraction surface analysis (LESA) and tandem mass spectrometry. J Mass Spectrom. 2012;47(11):1420–8.

    CAS  PubMed  Google Scholar 

  31. Havlikova J, Randall EC, Griffiths RL, Swales JG, Goodwin RJA, Bunch J, et al. Quantitative imaging of proteins in tissue by stable isotope labeled mimetic liquid extraction surface analysis mass spectrometry. Anal Chem. 2019;91(22):14198–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Swales JG, Strittmatter N, Tucker JW, Clench MR, Webborn PJH, Goodwin RJA. Spatial quantitation of drugs in tissues using liquid extraction surface analysis mass spectrometry imaging. Sci Rep. 2016;6:37648.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Almeida R, Berzina Z, Arnspang EC, Baumgart J, Vogt J, Nitsch R, et al. Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis. Anal Chem. 2015;87(3):1749–56.

    CAS  PubMed  Google Scholar 

  34. Lamont L, Baumert M, Potocnik NO, Allen M, Vreeken R, Heeren RMA, et al. Integration of ion mobility MSE after fully automated, online, high-resolution liquid extraction surface analysis micro-liquid chromatography. Anal Chem. 2017;89(20):11143–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kertesz V, Van Berkel GJ. Liquid microjunction surface sampling coupled with high-pressure liquid chromatography-electrospray ionization-mass spectrometry for analysis of drugs and metabolites in whole-body thin tissue sections. Anal Chem. 2010;82(14):5917–21.

    CAS  PubMed  Google Scholar 

  36. Kertesz V, Weiskittel TM, Van Berkel GJ. An enhanced droplet-based liquid microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially resolved analysis. Anal Bioanal Chem. 2015;407(8):2117–25.

    CAS  PubMed  Google Scholar 

  37. Chen WQ, Wang LF, Van Berkel GJ, Kertesz V, Gan JP. Quantitation of repaglinide and metabolites in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A. 2016;1439:137–43.

    CAS  PubMed  Google Scholar 

  38. Kertesz V, Weiskittel TM, Vavrek M, Freddo C, Van Berkel GJ. Extraction efficiency and implications for absolute quantitation of propranolol in mouse brain, liver and kidney tissue sections using droplet- based liquid microjunction surface sampling high performance liquid chromatography/ electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(14):1705–12.

    CAS  PubMed  Google Scholar 

  39. Chen XH, Hatsis P, Judge J, Argikar UA, Ren X, Sarber J, et al. Compound property optimization in drug discovery using quantitative surface sampling micro liquid chromatography with tandem mass spectrometry. Anal Chem. 2016;88(23):11813–20.

    CAS  PubMed  Google Scholar 

  40. Jin DQ, Shi SW, Ma Y, Fang Q. LC-Swan probe: an integrated in situ sampling interface for liquid chromatography separation and mass spectrometry analysis. Anal Chem. 2020;92(13):9214–22.

    CAS  PubMed  Google Scholar 

  41. de Jesus J, Bunch J, Verbeck G, Webb RP, Costa C, Goodwin RJA, et al. Application of various normalization methods for microscale analysis of tissues using direct analyte probed nanoextraction. Anal Chem. 2018;90(20):12094–100.

    PubMed  Google Scholar 

  42. Lewis HM, Webb RP, Verbeck GF, Bunch J, de Jesus J, Costa C, et al. Nanoextraction coupled to liquid chromatography mass spectrometry delivers improved spatially resolved analysis. Anal Chem. 2019;91(24):15411–7.

    CAS  PubMed  Google Scholar 

  43. Ullberg S. Studies on the distribution and fate of S35-labelled benzylpenicillin in the body. Acta Radiol Suppl. 1954;118:1–110.

    CAS  PubMed  Google Scholar 

  44. Schweitzer A, Fahr A, Niederberger W. A simple method for the quantitation of 14C-whole-body autoradiograms. Int J Radiat Appl Instrument A Appl Radiat Isotopes. 1987;38(5):329–33.

    CAS  Google Scholar 

  45. Inazawa K, Koike M, Yamaguchi T. Study on the practical use of quantitative whole-body auto-radioluminography. Exp Mol Pathol. 2004;76(2):153–65.

    CAS  PubMed  Google Scholar 

  46. Luckey GW, Apparatus and method for producing images corresponding to patterns of high energy radiation. US Patent 3,859,527. Issued: January 7, 1975.

  47. McEwen A, Henson C. Quantitative whole-body autoradiography: past, present and future. Bioanalysis. 2015;7(5):557–68.

    CAS  PubMed  Google Scholar 

  48. McEwen AB, Henson CM, Wood SG. Quantitative whole-body autoradiography, LC-MS/MS and MALDI for drug-distribution studies in biological samples: the ultimate matrix trilogy. Bioanalysis. 2014;6(3):377–91.

    CAS  PubMed  Google Scholar 

  49. Penner N, Xu L, Prakash C. Radiolabeled absorption, distribution, metabolism, and excretion studies in drug development: why, when, and how? Chem Res Toxicol. 2012;25(3):513–31.

    CAS  PubMed  Google Scholar 

  50. Solon EG, Schweitzer A, Stoeckli M, Prideaux B. Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J. 2010;12(1):11–26.

    CAS  PubMed  Google Scholar 

  51. Solon EG, Balani SK, Lee FW. Whole-body autoradiography in drug discovery. Curr Drug Metab. 2002;3(5):451–62.

    CAS  PubMed  Google Scholar 

  52. Solon EG. Autoradiography techniques and quantification of drug distribution. Cell Tissue Res. 2015;360(1):87–107.

    PubMed  Google Scholar 

  53. Leopold J, Popkova Y, Engel KM, Schiller J. Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules. 2018;8(4):173.

    PubMed Central  Google Scholar 

  54. Schulz S, Becker M, Groseclose MR, Schadt S, Hopf C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr Opin Biotech. 2019;55:51–9.

    CAS  PubMed  Google Scholar 

  55. Turker SD, Dunn WB, Wilkie J. MALDI-MS of drugs: profiling, imaging, and steps towards quantitative analysis. Appl Spectrosc Rev. 2017;52(1):73–99.

    CAS  Google Scholar 

  56. Chaurand P, Cornett DS, Angel PM, Caprioli RM. From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol Cell Proteomics. 2011;10(2):O110.004259.

    PubMed  Google Scholar 

  57. Rzagalinski I, Volmer DA. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry - a tutorial review. Biochim Biophys Acta - Proteins Proteom. 2017;1865(7):726–39.

    CAS  PubMed  Google Scholar 

  58. Porta T, Lesur A, Varesio E, Hopfgartner G. Quantification in MALDI-MS imaging: what can we learn from MALDI-selected reaction monitoring and what can we expect for imaging? Anal Bioanal Chem. 2015;407(8):2177–87.

    CAS  PubMed  Google Scholar 

  59. Swales JG, Hamm G, Clench MR, Goodwin RJA. Mass spectrometry imaging and its application in pharmaceutical research and development: a concise review. Int J Mass Spectrom. 2019;437:99–112.

    CAS  Google Scholar 

  60. Sun N, Walch A. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites in tissue at therapeutic levels. Histochem Cell Biol. 2013;140(2):93–104.

    CAS  PubMed  Google Scholar 

  61. Cohen LH, Gusev AI. Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem. 2002;373(7):571–86.

    CAS  PubMed  Google Scholar 

  62. Duncan MW, Roder H, Hunsucker SW. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct Genomic Proteomic. 2008;7(5):355–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kubo A, Kajimura M, Suematsu M. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS): a challenge for reliable quantitative analyses. Mass Spectrometry. 2012;1(1):A0004-A.

    Google Scholar 

  64. Bong Y, Li B, Malitsky S, Rogachev L, Aharoni A, Kaftan F, et al. Sample preparation for mass spectrometry imaging of plant tissues: A review. Front Plant Sci. 2016;7:60.

    Google Scholar 

  65. Park S, Yoon S, Min H, Moon SM, Choi YJ, Kim IS, et al. Compartmentalized arrays of matrix droplets for quantitative mass spectrometry imaging of adsorbed peptides. Anal Chem. 2020;92(13):8715–21.

    CAS  PubMed  Google Scholar 

  66. Prentice BM, Chumbley CW, Caprioli RM. Absolute quantification of rifampicin by MALDI imaging mass spectrometry using multiple TOF/TOF events in a single laser shot. J Am Soc Mass Spectr. 2017;28(1):136–44.

    CAS  Google Scholar 

  67. Luxembourg SL, McDonnell LA, Duursma MC, Guo XH, Heeren RMA. Effect of local matrix crystal variations in matrix-assisted ionization techniques for mass spectrometry. Anal Chem. 2003;75(10):2333–41.

    CAS  PubMed  Google Scholar 

  68. Heeren RMA, Kukrer-Kaletas B, Taban IM, MacAleese L, McDonnell LA. Quality of surface: the influence of sample preparation on MS-based biomolecular tissue imaging with MALDI-MS and (ME-)SIMS. Appl Surf Sci. 2008;255(4):1289–97.

    CAS  Google Scholar 

  69. Nilsson A, Fehniger TE, Gustavsson L, Andersson M, Kenne K, Marko-Varga G, et al. Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS One. 2010;5(7):e11411.

    PubMed  PubMed Central  Google Scholar 

  70. Chumbley CW, Reyzer ML, Allen JL, Marriner GA, Via LE, Barry CE, et al. Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal Chem. 2016;88(4):2392–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Barry JA, Ait-Belkacem R, Hardesty WM, Benakli L, Andonian C, Licea-Perez H, et al. Multicenter validation study of quantitative imaging mass spectrometry. Anal Chem. 2019;91(9):6266–74.

    CAS  PubMed  Google Scholar 

  72. Hamm G, Bonnel D, Legouffe R, Pamelard F, Delbos JM, Bouzom F, et al. Quantitative mass spectrometry imaging of propranolol and olanzapine using tissue extinction calculation as normalization factor. J Proteome. 2012;75(16):4952–61.

    CAS  Google Scholar 

  73. Goodwin RJA, Mackay CL, Nilsson A, Harrison DJ, Farde L, Andren PE, et al. Qualitative and quantitative MALDI imaging of the positron emission tomography ligands raclopride (a D2 dopamine antagonist) and SCH 23390 (a D1 dopamine antagonist) in rat brain tissue sections using a solvent-free dry matrix application method. Anal Chem. 2011;83(24):9694–701.

    CAS  PubMed  Google Scholar 

  74. Pirman DA, Yost RA. Quantitative tandem mass spectrometric imaging of endogenous acetyl-L-carnitine from piglet brain tissue using an internal standard. Anal Chem. 2011;83(22):8575–81.

    CAS  PubMed  Google Scholar 

  75. Pirman DA, Reich RF, Kiss A, Heeren RMA, Yost RA. Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard. Anal Chem. 2013;85(2):1081–9.

    CAS  PubMed  Google Scholar 

  76. Reich RF, Cudzilo K, Levisky JA, Yost RA. Quantitative MALDI-MSn analysis of cocaine in the autopsied brain of a human cocaine user employing a wide isolation window and internal standards. J Am Soc Mass Spectrom. 2010;21(4):564–71.

    CAS  PubMed  Google Scholar 

  77. Prideaux B, Stoeckli M. Mass spectrometry imaging for drug distribution studies. J Proteome. 2012;75(16):4999–5013.

    CAS  Google Scholar 

  78. Hsieh Y, Casale R, Fukuda E, Chen JW, Knemeyer I, Wingate J, et al. Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun Mass Spectrom. 2006;20(6):965–72.

    CAS  PubMed  Google Scholar 

  79. Fehniger TE, Vegvari A, Rezeli M, Prikk K, Ross P, Dahlback M, et al. Direct demonstration of tissue uptake of an inhaled drug: proof-of-principle study using matrix-assisted laser desorption ionization mass spectrometry imaging. Anal Chem. 2011;83(21):8329–36.

    CAS  PubMed  Google Scholar 

  80. Clemis EJ, Smith DS, Camenzind AG, Danell RM, Parker CE, Borchers CH. Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging. Anal Chem. 2012;84(8):3514–22.

    CAS  PubMed  Google Scholar 

  81. Landgraf RR, Garrett TJ, Conaway MCP, Calcutt NA, Stacpoole PW, Yost RA. Considerations for quantification of lipids in nerve tissue using matrix-assisted laser desorption/ionization mass spectrometric imaging. Rapid Commun Mass Spectrom. 2011;25(20):3178–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pirman DA, Kiss A, Heeren RMA, Yost RA. Identifying tissue-specific signal variation in MALDI mass spectrometric imaging by use of an internal standard. Anal Chem. 2013;85(2):1090–6.

    CAS  PubMed  Google Scholar 

  83. Buck A, Halbritter S, Spath C, Feuchtinger A, Aichler M, Zitzelsberger H, et al. Distribution and quantification of irinotecan and its active metabolite SN-38 in colon cancer murine model systems using MALDI MSI. Anal Bioanal Chem. 2015;407(8):2107–16.

    CAS  PubMed  Google Scholar 

  84. Bunch J, Clench MR, Richards DS. Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom. 2004;18(24):3051–60.

    CAS  PubMed  Google Scholar 

  85. Prideaux B, Dartois V, Staab D, Weiner DM, Goh A, Via LE, et al. High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal Chem. 2011;83(6):2112–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kallback P, Shariatgorji M, Nilsson A, Andren PE. Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J Proteome. 2012;75(16):4941–51.

    Google Scholar 

  87. Nakanishi T, Takai S, Jin D, Takubo T. Quantification of candesartan in mouse plasma by MALDI-TOFMS and in tissue sections by MALDI-imaging using the stable-isotope dilution technique. Mass Spectrometry. 2013;2(1):A0021-A.

    Google Scholar 

  88. Schulz S, Gerhardt D, Meyer B, Seegel M, Schubach B, Hopf C, et al. DMSO-enhanced MALDI MS imaging with normalization against a deuterated standard for relative quantification of dasatinib in serial mouse pharmacology studies. Anal Bioanal Chem. 2013;405(29):9467–76.

    CAS  PubMed  Google Scholar 

  89. Groseclose MR, Castellino S. A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal Chem. 2013;85(21):10099–106.

    CAS  PubMed  Google Scholar 

  90. Tsubata Y, Hayashi M, Tanino R, Aikawa H, Ohuchi M, Tamura K, et al. Evaluation of the heterogeneous tissue distribution of erlotinib in lung cancer using matrix-assisted laser desorption ionization mass spectrometry imaging. Sci Rep. 2017;7:12622.

    PubMed  PubMed Central  Google Scholar 

  91. Koeniger SL, Talaty N, Luo YP, Ready D, Voorbach M, Seifert T, et al. A quantitation method for mass spectrometry imaging. Rapid Commun Mass Spectrom. 2011;25(4):503–10.

    CAS  PubMed  Google Scholar 

  92. Laiko VV, Baldwin MA, Burlingame AL. Atmospheric pressure matrix assisted laser desorption/ionization mass spectrometry. Anal Chem. 2000;72(4):652–7.

    CAS  PubMed  Google Scholar 

  93. Moyer SC, Marzilli LA, Woods AS, Laiko VV, Doroshenko VM, Cotter RJ. Atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) on a quadrupole ion trap mass spectrometer. Int J Mass Spectrom. 2003;226(1):133–50.

    CAS  Google Scholar 

  94. Wu Q, Rubakhin SS, Sweedler JV. Quantitative imprint mass spectrometry imaging of endogenous ceramides in rat brain tissue with kinetic calibration. Anal Chem. 2020;92(9):6613–21.

    CAS  PubMed  Google Scholar 

  95. Fletcher JS, Vickerman JC. Secondary ion mass spectrometry: characterizing complex samples in two and three dimensions. Anal Chem. 2013;85(2):610–39.

    CAS  PubMed  Google Scholar 

  96. Kraft ML, Klitzing HA. Imaging lipids with secondary ion mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids. 2014;1841(8):1108–19.

    CAS  Google Scholar 

  97. Stevie FA, Griffis DP. Quantification in dynamic SIMS: current status and future needs. Appl Surf Sci. 2008;255(4):1364–7.

    CAS  Google Scholar 

  98. Werner HW. Quantitative secondary ion mass spectrometry: a review. Surf Interface Anal. 1980;2(2):56–74.

    CAS  Google Scholar 

  99. Deng RC, Williams P. Factors affecting precision and accuracy in quantitative-analysis by secondary ion mass-spectrometry. Anal Chem. 1989;61(17):1946–8.

    CAS  Google Scholar 

  100. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, et al. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014;20(4):436−42.

  101. Levenson RM, Borowsky AD, Angelo M. Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab Investig. 2015;95(4):397–405.

    CAS  PubMed  Google Scholar 

  102. Rost S, Giltnane J, Bordeaux JM, Hitzman C, Koeppen H, Liu SD. Multiplexed ion beam imaging analysis for quantitation of protein expression in cancer tissue sections. Lab Investig. 2017;97(8):992–1003.

    CAS  PubMed  Google Scholar 

  103. Sussulini A, Becker JS, Becker JS. Laser ablation ICP-MS: application in biomedical research. Mass Spectrom Rev. 2017;36(1):47–57.

    CAS  PubMed  Google Scholar 

  104. Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem. 2015;407(22):6593–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cruz-Alonso M, Lores-Padin A, Valencia E, Gonzalez-Iglesias H, Fernandez B, Pereiro R. Quantitative mapping of specific proteins in biological tissues by laser ablation-ICP-MS using exogenous labels: aspects to be considered. Anal Bioanal Chem. 2019;411(3):549–58.

    CAS  PubMed  Google Scholar 

  106. Baharlou H, Canete NP, Cunningham AL, Harman AN, Patrick E. Mass cytometry imaging for the study of human diseases-Applications and data analysis strategies. Front Immunol. 2019;10:2657.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chang Q, Ornatsky OI, Siddiqui I, Loboda A, Baranov VI, Hedley DW. Imaging mass cytometry. Cytometry Part A. 2017;91(2):160–9.

    Google Scholar 

  108. Tanner SD, Baranov VI, Ornatsky OI, Bandura DR, George TC. An introduction to mass cytometry: fundamentals and applications. Cancer Immunol Immun. 2013;62(5):955–65.

    Google Scholar 

  109. Ali HR, Jackson HW, Zanotelli VRT, Danenberg E, Fischer JR, Bardwell H, et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nature Cancer. 2020;1(2):163–75.

    Google Scholar 

  110. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11(4):417−22.

  111. Taylor CR, Levenson RM. Quantification of immunohistochemistry - issues concerning methods, utility and semiquantitative assessment II. Histopathology. 2006;49(4):411–24.

    CAS  PubMed  Google Scholar 

  112. Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.

    CAS  PubMed  Google Scholar 

  113. Vismeh R, Waldon DJ, Teffera Y, Zhao ZY. Localization and quantification of drugs in animal tissues by use of desorption electrospray ionization mass spectrometry imaging. Anal Chem. 2012;84(12):5439–45.

    CAS  PubMed  Google Scholar 

  114. Hansen HT, Janfelt C. Aspects of quantitation in mass spectrometry imaging investigated on cryo-sections of spiked tissue homogenates. Anal Chem. 2016;88(23):11513–20.

    CAS  PubMed  Google Scholar 

  115. Luo ZG, He JJ, He JM, Huang L, Song XW, Li X, et al. Quantitative analysis of drug distribution by ambient mass spectrometry imaging method with signal extinction normalization strategy and inkjet-printing technology. Talanta. 2018;179:230–7.

    CAS  PubMed  Google Scholar 

  116. Song XW, He JM, Pang XC, Zhang J, Sun CL, Huang LJ, et al. Virtual calibration quantitative mass spectrometry imaging for accurately mapping analytes across heterogenous biotissue. Anal Chem. 2019;91(4):2838–46.

    CAS  PubMed  Google Scholar 

  117. Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem. 2007;79(21):8098–106.

    CAS  PubMed  Google Scholar 

  118. Brady JJ, Judge EJ, Levis RJ. Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization. Rapid Commun Mass Spectrom. 2009;23(19):3151–7.

    CAS  PubMed  Google Scholar 

  119. Shiea J, Huang MZ, Hsu HJ, Lee CY, Yuan CH, Beech I, et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun Mass Spectrom. 2005;19(24):3701–4.

    CAS  PubMed  Google Scholar 

  120. Rezenom YH, Dong J, Murray KK. Infrared laser-assisted desorption electrospray ionization mass spectrometry. Analyst. 2008;133(2):226–32.

    CAS  PubMed  Google Scholar 

  121. Sampson JS, Hawkridge AM, Muddiman DC. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom. 2006;17(12):1712–6.

    CAS  PubMed  Google Scholar 

  122. Cheng SC, Shiea C, Huang YL, Wang CH, Cho YT, Shiea J. Laser-based ambient mass spectrometry. Anal Methods-Uk. 2017;9(34):4924–35.

    CAS  Google Scholar 

  123. Cao F, Donnarumma F, Murray KK. Particle size measurement from infrared laser ablation of tissue. Analyst. 2016;141(1):183–90.

    CAS  PubMed  Google Scholar 

  124. Beach DG, Walsh CM, McCarron P. High-throughput quantitative analysis of domoic acid directly from mussel tissue using laser ablation electrospray ionization – tandem mass spectrometry. Toxicon. 2014;92:75–80.

    CAS  PubMed  Google Scholar 

  125. Sistani H, Karki S, Archer JJ, Shi FJ, Levis RJ. Assessment of reproducibility of laser electrospray mass spectrometry using electrospray deposition of analyte. J Am Soc Mass Spectrom. 2017;28(5):880–6.

    CAS  PubMed  Google Scholar 

  126. Perez JJ, Flanigan PM, Karki S, Levis RJ. Laser electrospray mass spectrometry minimizes ion suppression facilitating quantitative mass spectral response for multicomponent mixtures of proteins. Anal Chem. 2013;85(14):6667–73.

    CAS  PubMed  Google Scholar 

  127. Flanigan PM, Perez JJ, Karki S, Levis RJ. Quantitative measurements of small molecule mixtures using laser electrospray mass spectrometry. Anal Chem. 2013;85(7):3629–37.

    CAS  PubMed  Google Scholar 

  128. Bokhart MT, Muddiman DC. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens. Analyst. 2016;141(18):5236–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tu AQ, Muddiman DC. Systematic evaluation of repeatability of IR-MALDESI-MS and normalization strategies for correcting the analytical variation and improving image quality. Anal Bioanal Chem. 2019;411(22):5729–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Bokhart MT, Rosen E, Thompson C, Sykes C, Kashuba ADM, Muddiman DC. Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization. Anal Bioanal Chem. 2015;407(8):2073–84.

    CAS  PubMed  Google Scholar 

  131. Nazari M, Bokhart MT, Loziuk PL, Muddiman DC. Quantitative mass spectrometry imaging of glutathione in healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst. 2018;143(3):654–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lorenz M, Ovchinnikova OS, Van Berkel GJ. Fully automated laser ablation liquid capture surface analysis using nanoelectrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2014;28(11):1312–20.

    CAS  PubMed  Google Scholar 

  133. Ovchinnikova OS, Bhandari D, Lorenz M, Van Berkel GJ. Transmission geometry laser ablation into a non-contact liquid vortex capture probe for mass spectrometry imaging. Rapid Commun Mass Spectrom. 2014;28(15):1665–73.

    CAS  PubMed  Google Scholar 

  134. Cahill JF, Kertesz V, Ovchinnikova OS, Van Berkel GJ. Comparison of internal energy distributions of ions created by electrospray ionization and laser ablation-liquid vortex capture/electrospray ionization. J Am Soc Mass Spectrom. 2015;26(9):1462–8.

    CAS  PubMed  Google Scholar 

  135. Park SG, Murray KK. Infrared laser ablation sample transfer for MALDI and electrospray. J Am Soc Mass Spectrom. 2011;22(8):1352–62.

    CAS  PubMed  Google Scholar 

  136. Park SG, Murray KK. Infrared laser ablation sample transfer for MALDI imaging. Anal Chem. 2012;84(7):3240–5.

    CAS  PubMed  Google Scholar 

  137. Park SG, Murray KK. Laser ablation sample transfer for mass spectrometry imaging. In: He L, editor. Mass spectrometry imaging of small molecules. New York: Springer; 2015. p. 129–39.

    Google Scholar 

  138. Brauer JI, Beech IB, Sunner J. Mass spectrometric imaging using laser ablation and solvent capture by aspiration (LASCA). J Am Soc Mass Spectrom. 2015;26(9):1538–47.

    CAS  PubMed  Google Scholar 

  139. Brauer JI, Makama Z, Bonifay V, Aydin E, Kaufman ED, Beech IB, et al. Mass spectrometric metabolomic imaging of biofilms on corroding steel surfaces using laser ablation and solvent capture by aspiration. Biointerphases. 2015;10(1):019003.

    PubMed  Google Scholar 

  140. O’Brien JT, Williams ER, Holman HYN. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) of live plant tissue with plume capture by continuous flow solvent probe. Anal Chem. 2015;87(5):2631–8.

    PubMed  Google Scholar 

  141. Park SG, Murray KK. Infrared laser ablation sample transfer for on-line liquid chromatography electrospray ionization mass spectrometry. J Mass Spectrom. 2012;47(10):1322–6.

    CAS  PubMed  Google Scholar 

  142. Donnarumma F, Murray KK. Laser ablation sample transfer for localized LC-MS/MS proteomic analysis of tissue. J Mass Spectrom. 2016;51(4):261–8.

    CAS  PubMed  Google Scholar 

  143. Park SG, Murray KK. Ambient laser ablation sampling for capillary electrophoresis mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(15):1673–80.

    CAS  PubMed  Google Scholar 

  144. Ovchinnikova OS, Lorenz M, Kertesz V, Van Berkel GJ. Laser ablation sampling of materials directly into the formed liquid microjunction of a continuous flow surface sampling probe/electrospray ionization emitter for mass spectral analysis and imaging. Anal Chem. 2013;85(21):10211–7.

    CAS  PubMed  Google Scholar 

  145. Cahill JF, Khalid M, Retterer ST, Walton CL, Kertesz V. In situ chemical monitoring and imaging of contents within microfluidic devices having a porous membrane wall using liquid microjunction surface sampling probe mass spectrometry. J Am Soc Mass Spectrom. 2020;31(4):832–9.

    CAS  PubMed  Google Scholar 

  146. Griffiths RL, Randall EC, Race AM, Bunch J, Cooper HJ. Raster-mode continuous-flow liquid microjunction mass spectrometry imaging of proteins in thin tissue sections. Anal Chem. 2017;89(11):5684–8.

    Google Scholar 

  147. Prideaux B, ElNaggar MS, Zimmerman M, Wiseman JM, Li XH, Dartois V. Mass spectrometry imaging of levofloxacin distribution in TB-infected pulmonary lesions by MALDI-MSI and continuous liquid microjunction surface sampling. Int J Mass Spectrom. 2015;377:699–708.

    CAS  PubMed  Google Scholar 

  148. Roach PJ, Laskin J, Laskin A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst. 2010;135(9):2233–6.

    CAS  PubMed  Google Scholar 

  149. Lanekoff I, Thomas M, Carson JP, Smith JN, Timchalk C, Laskin J. Imaging nicotine in rat brain tissue by use of nanospray desorption electrospray ionization mass spectrometry. Anal Chem. 2013;85(2):882–9.

    CAS  PubMed  Google Scholar 

  150. Bergman HM, Lundin E, Andersson M, Lanekoff I. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization. Analyst. 2016;141(12):3686–95.

    CAS  PubMed  Google Scholar 

  151. Duncan KD, Fang R, Yuan J, Chu RK, Dey SK, Burnum-Johnson KE et al. Quantitative mass spectrometry imaging of prostaglandins as silver ion adducts with nanospray desorption electrospray ionization. Anal Chem. 2018;90(12):7246–52.

  152. Bergman HM, Lanekoff I. Profiling and quantifying endogenous molecules in single cells using nano-DESI MS. Analyst. 2017;142(19):3639–47.

    CAS  PubMed  Google Scholar 

  153. Rao W, Pan N, Yang ZB. High resolution tissue imaging using the single-probe mass spectrometry under ambient conditions. J Am Soc Mass Spectrom. 2015;26(6):986–93.

    CAS  PubMed  Google Scholar 

  154. Pan N, Standke SJ, Kothapalli NR, Sun M, Bensen RC, Burgett AWG, et al. Quantification of drug molecules in live single cells using the single-probe mass spectrometry technique. Anal Chem. 2019;91(14):9018–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U. Mass spectrometry imaging for plant biology: a review. Phytochem Rev. 2016;15(3):445–88.

    CAS  PubMed  Google Scholar 

  156. Takahashi K, Kozuka T, Anegawa A, Nagatani A, Mimura T. Development and application of a high-resolution imaging mass spectrometer for the study of plant tissues. Plant Cell Physiol. 2015;56(7):1329–38.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work and all authors were supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Bioimaging Science Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vilmos Kertesz or John F. Cahill.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Mass Spectrometry Imaging 2.0 with guest editors Shane R. Ellis and Tiffany Porta Siegel.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kertesz, V., Cahill, J.F. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Anal Bioanal Chem 413, 2619–2636 (2021). https://doi.org/10.1007/s00216-020-02964-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02964-3

Keywords

Navigation