Skip to main content
Log in

Prediction of Primary Dendrite Arm Spacing in Pulsed Laser Surface Melted Single Crystal Superalloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Primary dendritic arm spacing (PDAS) is an important microstructure feature of the nickel-base single crystal superalloys. In this paper, a numerical model predicting the PDAS evolution with additive manufacturing parameters using pulsed laser is established, which combines the theoretical PDAS models with the temperature field calculation model during pulsed laser process. Based on this model, processing maps that related process parameters to the evolution of PDAS are generated. To obtain more accurate prediction model, the parameters of different solidification conditions, \(\overline{{G^{ - 0.5} V^{ - 0.25} }}\) and \(\overline{{G}^{-0.5}{V}^{-0.25}}\), are selected to calculate PDAS. The simulation results show that the PDAS increases as the arise of P and t. The processing-PDAS map can accurately predict the evolution of PDAS with pulsed laser process parameters, which is well in accordance with the experimental results. Additionally, the PDAS values calculated by the \(\overline{{G}^{-0.5}{V}^{-0.25}}\) are more in line with the experimental results than those calculated by the \({\bar{G}}^{-0.5}{\bar{V}}^{-0.25}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Chen, Y. He, Y. Yang, S. Niu, H. Ren, Int. J. Adv. Manuf. Tech. 89, 3651 (2016)

    Article  Google Scholar 

  2. H.J. Zhang, H.U. Guo-Qing, W.Y. Liu, Z.H. Lin, Machinery 6, 1 (2004)

    CAS  Google Scholar 

  3. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Prog. Mater. Sci. 74, 401 (2015)

    Article  CAS  Google Scholar 

  4. M. Gäumann, S. Henry, F. Cléton, J.D. Wagnière, W. Kurz, Mater. Sci. Eng. A 271, 232 (1999)

    Article  Google Scholar 

  5. Y.J. Liang, X. Cheng, H.M. Wang, Acta Mater. 118, 17 (2016)

    Article  CAS  Google Scholar 

  6. C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, G. Eggeler, Metall. Mater. Trans. A 49, 3781 (2018)

    Article  Google Scholar 

  7. M. Gäumann, Dissertation, EPFL, 1999.

  8. G.W. Wang, J.J. Liang, Y.Z. Zhou, L.B. Zhao, T. Jin, X.F. Sun, J Mater Sci Technol 34, 732 (2018)

    Article  Google Scholar 

  9. W. Kurz, Solidification microstructure processing maps: Theory and application. Adv. Eng. Mater. 3, 443 (2001)

    Article  CAS  Google Scholar 

  10. L. Wang, N. Wang, Acta Mater. 104, 250 (2016)

    Article  CAS  Google Scholar 

  11. G.W. Wang, J.J. Liang, Y.Z. Zhou, T. Jin, X.F. Sun, Z.Q. Hu, Acta Metall. Sin-Engl. 29, 763 (2016)

    Article  CAS  Google Scholar 

  12. G.W. Wang, J.J. Liang, Y.H. Yang, Y. Shi, Y.Z. Zhou, T. Jin, X.F. Sun, J. Mater. Sci. Technol. 34, 1315 (2018)

    Article  Google Scholar 

  13. M. Huang, G. Zhang, D. Wang, J.S. Dong, L. Wang, L.H. Lou, Acta Metall. Sin.-Engl. Lett. 31, 887 (2018)

    CAS  Google Scholar 

  14. G.W. Wang, J.J. Liang, Y.Z. Zhou, T. Jin, X.F. Sun, Z.Q. Hu, J. Mater. Sci. Technol. 33, 499 (2017)

    Article  Google Scholar 

  15. Y.J. Liang, X. Cheng, J. Li, H.M. Wang, Mater. Des. 130, 197 (2017)

    Article  CAS  Google Scholar 

  16. Y.J. Liang, H.M. Wang, Mater. Des. 102, 297 (2016)

    Article  CAS  Google Scholar 

  17. M. Gäumann, C. Bezençon, P. Canalis, W. Kurz, Acta Mater. 49, 1051 (2001)

    Article  Google Scholar 

  18. L. Liu, T.W. Huang, J. Zhang, H.Z. Fu, Mater. Lett. 61, 227 (2007)

    Article  CAS  Google Scholar 

  19. W. Kurz, D. Fisher, Fundamentals of Solidification (Trans Tech Publications, Switzerland, 1989)

    Google Scholar 

  20. S.Z. Lu, J.D. Hunt, J. Cryst. Growth 123, 17 (1992)

    Article  Google Scholar 

  21. T. Okamoto, K. Kishitake, J. Cryst. Growth 29, 137 (1975)

    Article  CAS  Google Scholar 

  22. J.D. Hunt, S.Z. Lu, Metall. Mater. Trans. A 27, 611 (1996)

    Article  Google Scholar 

  23. R. Trivedi, Mater. Trans. A 15, 977 (1984)

    Article  Google Scholar 

  24. J.D. Hunt, Solidification and Casting of Metals (The Metal Society, London, 1979), pp. 3–9

    Google Scholar 

  25. W. Kurz, D.J. Fisher, Acta Metall. 29, 11 (1981)

    Article  CAS  Google Scholar 

  26. D. Ma, P.R. Sahm, Metall. Mater. Trans. A 29, 1113 (1998)

    Article  Google Scholar 

  27. J.E. Spinelli, D.A. Rosa, I.L. Ferreira, A. Garcia, Mat. Sci. Eng. A 383, 271 (2004)

    Article  Google Scholar 

  28. J.E. Spinelli, O.F.L. Rocha, A. Garcia, Mater. Res. 9, 51 (2006)

    Article  CAS  Google Scholar 

  29. Y.J. Liang, A. Li, X. Cheng, X.T. Pang, H.M. Wang, J. Alloys Compd. 688, 133 (2016)

    Article  CAS  Google Scholar 

  30. C. Yang, Q. Xu, B. Liu, J. Mater. Sci. 53, 9755 (2018)

    Article  CAS  Google Scholar 

  31. D.T.J. Hurle, Solid-State Electron. 3, 37 (1961)

    Article  CAS  Google Scholar 

  32. S.H. Han, R. Trivedi, Acta Metall. Mater. 42, 25 (1994)

    Article  CAS  Google Scholar 

  33. R. Acharya, R. Bansal, J.J. Gambone, S. Das, Metall. Mater. Trans. B 45, 2279 (2014)

    Article  CAS  Google Scholar 

  34. H.S. Whitesell, L. Li, R.A. Overfelt, Metall. Mater. Trans. B 31, 546 (2000)

    Article  Google Scholar 

  35. A. Wagner, B.A. Shollock, M. McLean, Mater. Sci. Eng. A 374, 270 (2004)

    Article  Google Scholar 

  36. J.M. Drezet, S. Pellerin, C. Bezencon, S. Mokadem, J. Phys. Iv. 120, 299 (2004)

    CAS  Google Scholar 

  37. Z.T. Gan, H. Liu, S.X. Li, X.L. He, G. Yu, Int. J. Heat Mass Tran. 111, 709 (2017)

    Article  CAS  Google Scholar 

  38. T. Duffar, M.D. Serrano, L. Lerin, J.L. Santailler, Cryst. Res. Technol. 34, 457 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2017YFB1103800); the National Key R&D Program of China (Nos. 2017YFA0700703, 2018YFB1106000); the National Natural Science Foundation of China (NSFC) (Nos. 51771190, 51671189, U1508213); the National High Technology Research and Development Program (863) (No. 2014AA041701); and the fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201834).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Liang or Yizhou Zhou.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ci, S., Liang, J., Li, J. et al. Prediction of Primary Dendrite Arm Spacing in Pulsed Laser Surface Melted Single Crystal Superalloy. Acta Metall. Sin. (Engl. Lett.) 34, 485–494 (2021). https://doi.org/10.1007/s40195-020-01156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01156-3

Keywords

Navigation