Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2020

Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)

  • Fabian Eustermann , Matthias Eilers-Rethwisch , Maximilian K. Reimann and Oliver Janka EMAIL logo

Abstract

The intermetallic solid solution CePd1−xAuxAl (x = 0.1–0.9) has been synthesized from the elements by arc-melting and subsequent annealing in induction followed by tube furnaces. The samples were characterized using the Guinier powder diffraction technique and the structures of the nominal compositions CeAuAl and CePd0.2Au0.8Al were refined from single crystal X-ray diffractometer data. For small values of x = 0.1–0.3, the compounds crystallize in the hexagonal ZrNiAl-type structure (space group P62m), while for x = 0.5–0.9 the orthorhombic TiNiSi-type structure (space group Pnma) was observed. In both structure types, the transition metal and aluminum atoms form a complex polyanionic network with the cerium atoms filling the respective cavities. The transition metal atoms are in both cases surrounded in the shape of a tri-capped trigonal prism, the connectivity of these units, however, is different. Temperature-dependent magnetic susceptibility measurements of all compounds indicated a stable trivalent oxidation state for the cerium atoms along with antiferromagnetic ordering around TN ∼ 3 K.


Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.



Corresponding author: Oliver Janka, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149Münster, Germany; and Universität des Saarlandes, Anorganische Festkörperchemie, Campus C4 1, 66123Saarbrücken, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. Ute Ch. Rodewald and Dr. R.-D. Hoffmann for the single crystal intensity data collections.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on DVD; release 2019/20); ASM International®: Materials Park, Ohio (USA), 2019.Search in Google Scholar

2. Janka, O., Niehaus, O., Pöttgen, R., Chevalier, B. Z. Naturforsch. 2016, 71b, 737. https://doi.org/10.1515/znb-2016-0101.Search in Google Scholar

3. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 289. https://doi.org/10.1515/znb-2015-0018.Search in Google Scholar

4. Pöttgen, R., Janka, O., Chevalier, B. Z. Naturforsch. 2016, 71b, 165. https://doi.org/10.1515/znb-2016-0013.Search in Google Scholar

5. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 695. https://doi.org/10.1515/znb-2015-0109.Search in Google Scholar

6. Prchal, J., Kitazawa, H., Suzuki, O. J. Alloys Compd. 2007, 437, 117. https://doi.org/10.1016/j.jallcom.2006.07.078.Search in Google Scholar

7. Janka, O., Baumbach, R. E., Ronning, F., Thompson, J. D., Bauer, E. D., Kauzlarich, S. M. Z. Anorg. Allg. Chem. 2012, 638, 1996. https://doi.org/10.1002/zaac.201200173.Search in Google Scholar

8. Niehaus, O., Rodewald, U. Ch., Abdala, P. M., Touzani, R. S., Fokwa, B. P. T., Janka, O. Inorg. Chem. 2014, 53, 2471. https://doi.org/10.1021/ic402414f.Search in Google Scholar PubMed

9. Niehaus, O., Janka, O. Z. Anorg. Allg. Chem. 2015, 641, 1792. https://doi.org/10.1002/zaac.201500139.Search in Google Scholar

10. Ślebarski, A., Glogowski, W., Goraus, J., Kaczorowski, D. Phys. Rev. B 2008, 77, 125135. https://doi.org/10.1103/PhysRevB.77.125135.Search in Google Scholar

11. Fritsch, V., Huang, C.-L., Bagrets, N., Grube, K., Schumann, S., Löhneysen, H. V. Phys. Status Solidi B 2013, 250, 506. https://doi.org/10.1002/pssb.201200931.Search in Google Scholar

12. Eilers-Rethwisch, M., Niehaus, O., Janka, O. Z. Anorg. Allg. Chem. 2014, 640, 153. https://doi.org/10.1002/zaac.201300485.Search in Google Scholar

13. Grin, Y. N., Hiebl, K., Rogl, P. J. Less Common Met. 1985, 110, 299. https://doi.org/10.1016/0022-5088(85)90336-4.Search in Google Scholar

14. Hulliger, F. J. Alloys Compd. 1993, 196, 225. https://doi.org/10.1016/0925-8388(93)90600-r.Search in Google Scholar

15. Kitazawa, H., Matsushita, A., Matsumoto, T., Suzuki, T. Phys. B Condens. Matter 1994, 199–200, 28. https://doi.org/10.1016/0921-4526(94)91726-4.Search in Google Scholar

16. Li, D. X., Nimori, S., Kitazawa, H., Shiokawa, Y. Phys. B Condens. Matter 2006, 378–380, 805. https://doi.org/10.1016/j.physb.2006.01.294.Search in Google Scholar

17. Menon, L., Malik, S. K. Phys. Rev. B 1995, 51, 5858. https://doi.org/10.1103/physrevb.51.5858.Search in Google Scholar

18. Adroja, D. T., Rainford, B. D., Latika, M., Malik, S. K. J. Phys. Condens. Matter 1997, 9, 4743. https://doi.org/10.1088/0953-8984/9/22/024.Search in Google Scholar

19. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitsch. 1999, 43, 133.Search in Google Scholar

20. Niepmann, D., Prots, Y. M., Pöttgen, R., Jeitschko, W. J. Solid State Chem. 2000, 154, 329. https://doi.org/10.1006/jssc.2000.8789.Search in Google Scholar

21. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73. https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

22. Hulliger, F. J. Alloys Compd. 1993, 200, 75. https://doi.org/10.1016/0925-8388(93)90474-2.Search in Google Scholar

23. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786. https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

24. Petříček, V., Dušek, M., Palatinus, L., Jana2006. The Crystallographic Computing System; Institute of Physics, Academy of Sciences of the Czech Republic: Prague (Czech Republic), 2006.Search in Google Scholar

25. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345. https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

26. Emsley, J. The Elements; Clarendon Press, Oxford University Press: Oxford, New York, 1998.Search in Google Scholar

27. Xue, B., Schwer, H., Hulliger, F. Acta Crystallogr. 1994, C50, 338. https://doi.org/10.1107/s0108270193007632.Search in Google Scholar

28. Markiv, V. Y., Matushevskaya, N. F., Rozum, S. N., Kuz’ma, Y. B. Inorg. Mater. 1966, 2, 1356.Search in Google Scholar

29. Shoemaker, C. B., Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900. https://doi.org/10.1107/s0365110x65002189.Search in Google Scholar

30. Hermes, W., Matar, S. F., Pöttgen, R. Z. Naturforsch. 2009, 64b, 901. https://doi.org/10.1515/znb-2009-0805.Search in Google Scholar

31. Hill, H. H. in Plutonium and Other Actinides; Miner, W. N., Ed. AIME: New York, 1970, 2–19.Search in Google Scholar

32. Becker, P. J., Coppens, P. Acta Crystallogr. 1974, A30, 129. https://doi.org/10.1107/s0567739474000337.Search in Google Scholar

Received: 2020-02-03
Accepted: 2020-03-31
Published Online: 2020-10-30
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.5.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0025/html
Scroll to top button